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Abstract 
Modeling of geometalurgical variables is becoming increasingly important for improved 
management of mineral resources.  Mineral processing circuits are complex and depend 
on the interaction of a large number of properties of the ore feed.  At the Olympic Dam 
mine in South Australia, plant performance variables of interest include the recovery of 
Cu and U3O8, acid consumption, net recovery, drop weight index and bond mill work 
index.  There are an insufficient number of pilot plant trials (841) to consider direct 3-D 
spatial modeling for the entire deposit.  The more extensively sampled head grades, 
mineral associations, grain sizes and mineralogy variables are modeled and used to 
predict plant performance.  A two stage linear regression model of the available data is 
developed and provides a predictive model with correlations to the plant performance 
variables ranging from 0.65-0.90.  There are a total of 204 variables that have sufficient 
sampling to be considered in this regression model.  After developing the relationships 
between the 204 input variables and the six performance variables, the input variables are 
simulated with sequential Gaussian simulation and used to generate models of recovery 
of Cu and U3O8, acid consumption, net recovery, drop weight index and bond mill work 
index.  These final models are suitable for mine and plant optimization. 
 
Introduction 
Conventional resource estimation is focused on one or a few metals that are of interest in 
a particular domain because their extraction will be profitable.  Increasingly, it is 
becoming important to understand other characteristics of the ore that affect processing 
performance and recovery.  The detailed spatial distribution of these variables permits a 
more holistic optimization of the mining operation.  This study relates to BHP Billiton’s 
Olympic Dam project in South Australia.  Two important topics are addressed with the 
wealth of measurements taken at Olympic Dam: (1) recovery and other performance 
variables are related to measured rock properties through a multivariate regression model 
and (2) geostatistical models of the key rock properties are constructed by simulation and 
used to predict plant performance within the site. 
 
The main difference between typical geostatistical modeling and modeling of 
geometallurgical variables is that it is a highly multivariate problem with complex 
relationships between variables.  In this study there are a total of 204 measured variables 
that may or may not be related to the six plant performance variables of interest.  A short 
review of potential multivariate modeling techniques is warranted.  There are three 
general approaches (1) model all necessary variables accounting for their multivariate 
relationships (Almeida and Journel 1994, Hong 2010, Scott 1992) (2) reduce the number 
of variables to a manageable subset by amalgamation or elimination (Babak and Deutsch 
2009a,b) (3) transformation of the variables to be independent and model independently 
(Hotelling 1933; Johnson and Wichern 1998; Filzmoser 1999; Desbarats and 
Dimitrakopoulos 2000; Bailey and Krzanowski 2012 with many additional references 
therein).  A combination of these approaches is used throughout this work to predict 
various plant performance variables. 
 
An additional complexity involved in modeling geometallurgical data is the 
compositional nature of the variables.  A full sample analysis of all elements must sum to 



   

 

100%.  Moreover, a full mineralogy and mineralogical association analysis also sum to 
100%.  Without considering the constant sum aspect of the available data, typical 
multivariate modeling techniques would violate the sum to unity constraint.  A good 
review of best practice for compositional data modeling techniques is provided by 
Pawlowsky-Glahn and Buccianti (2011).  Typically these techniques involve a variable 
transformation such that there are no summation constraints on the transformed variables.  
The back transformation enforces the summation constraints.   
 
Minerals of interest in this mine include copper, uranium, gold, and silver.  In addition to 
payable elements, there are a large number of variables that affect plant performance and 
recoveries.  This is especially true for multi-metal deposits such as Olympic Dam because 
there are multiple processing streams, each with unique technical characteristics.  Cu is 
recovered by flotation and then smelting; U by acid leaching the Cu tailings; Ag and Au 
are by-products in the Cu concentrate.  In these processes, gangue mineralogy can be as 
important as the payable metal grades in predicting recoveries.  For example, modeling of 
hardness variables allow throughput prediction; certain gangue minerals impact acid 
consumption and U recoveries; and the copper-sulfur (Cu:S) ratio is a critical parameter 
for smelting.  Obtaining a spatial three-dimensional model of these variables is a high 
dimensional multivariate problem as there are 204 variables to consider.  Geometallurgy 
is an emerging discipline in mining that can be used to predict plant performance in situ, 
prior to extracting and processing the ore.   
 
Mineral recovery and expected plant performance are difficult to predict because they are 
influenced by a large number of variables such as mineralogy, grade, grain size, plant 
operation parameters, etc.  This multivariate problem is often oversimplified by using 
constant recovery factors and plant efficiencies based on past experience and empirical 
rules.  Such methods are acceptable during the pre-feasibility stages of mineral 
exploration; however, when results of pilot plant trials are available, statistical methods 
can be utilized to better predict recovery and plant performance.  In this study, 841 bulk 
samples from flotation and leach tests are used for the calibration of a predictive model.  
The performance variables of interest are recovery of Cu and U3O8, acid consumption 
(used in the leaching process), net recovery, drop weight index (DWi) and bond mill 
work index (BMWi).  The end result is a model that can be used to predict recovery and 
plant performance based on available geometallurgical data.  Finally, these variables are 
modeled over the entire site using collocated sequential Gaussian simulation.  These 
simulations are used to assess the six plant recovery variables exhaustively with 
uncertainty. 
 
Section 1: Linear regression for plant performance prediction 
 
Over 200 variables are available to develop a regression model (Table 1).  Using all 204 
variables with the relatively few number of bulk samples available would result in a 
model that is over fit to the available data.  Redundant and unimportant variables are 
identified and removed from the modeling process, reducing the number of variables to 
112.  Through a sequence of hierarchical variable amalgamation steps the variables are 
condensed into 4 major sub-categories.  A linear model based on these 4 amalgamated 



   

 

variables provides a robust predictive model that is used to estimate potential mineral 
recovery and plant performance.  The data in Table 1 are used as input to a regression 
model to predict six sparsely sampled plant performance variables: recovery of Cu and 
U3O8; acid consumption (used in the leaching process); net recovery; DWi and BMWi. 
The more extensively sampled input variables can be simulated at all locations in the 
deposit and used to predict local plant performance with the regression model, allowing 
for an optimization of mining and plant performance. 
 

Table 1: Data available.  Note that each grouping of data is compositional in nature. 
Data Type Description 

Head Assays 
 

This data contains the % content of the following elements:  
Co, As, Mo, Ni, Pb, Zn, Zr, Sr, Bi, Cd, Cs, Ga, In, Sb, Se, Te, Th, Tl 

 
Mineralogy 

(proportions and 
grain size) 

 
 
 

10 identified minerals make up the bulk of the deposit.  These include: 
Brannerite, Coffinite, Uraninite, Pyrite, Chalcopyrite, Bornite, Chalcocite, 

Other Sulphides, Acid Soluble Gangue and Acid Insoluble Gangue 
 

Association Data 
 

Thin sections have been analyzed and the complete matrix of associations 
between minerals is available.  This describes the contact area between 

two adjacent minerals within a single grain of crushed material. 

 
 

Table 2: Description of predictive models generated. 
Model Input variables Comments 

Full Model -head assays 
-10 mineralogy 
-10x11 matrix of associations 
-specific gravity 
 

This model represents the 
maximum data available. 
 

Typical Model - head assays 
-10 mineralogy 
-specific gravity 
 

This is the base case model.  
Field data will most likely 
contain these variables 
 

Limited Model -limited head assays (see Figures 1 and 2) 
-7 mineralogy variables 
-specific gravity 

Only head assays that have 
many samples in the available 
database are considered. 

 
Methodology 

A linear regression model is used to predict the plant performance variables.  One 
drawback with a linear regression model is that all input variables are required for 
prediction.  The regression model cannot be applied directly if a single input variable is 
missing from a sample.  For this reason, three regression models are generated (Table 2).  
Each model represents a decreasing number of input parameters.  Selection of the 
appropriate linear regression model would depend on the available information at each 
location in the mine.  If only a small number of variables are missing, data imputation 
strategies (Enders 2010) could be implemented to replace the missing variables.  This is 
only recommended if a small number of variables are preventing the use of a more 
detailed model. 



   

 

 
The regression models are based on a large set of input variables.  The variables 

are merged into super secondary variables based on the correlations between variables 
(Babak and Deutsch 2009a,b).  This is done because there are too few sample data 
available to accurately determine regression coefficients for the 204 input variables 
available.  The final model is a linear regression on four super secondary variables.  The 
detailed methodology consists of seven steps. These steps are expanded upon below. 

 
1. Remove unimportant and redundant variables. 
2. Quantile to quantile univariate transformation to a Gaussian distribution. 
3. Merge the variables (level 1).  This step reduces the 112 input variables to 23 

merged variables. 
4. Merge the variables (level 2).  This step reduces the 23 merged variables to 4.  
5. Regression on the 4 variables and prediction of the plant performance 

variables: DWi, BMWi, Cu recovery, U3O8 recovery, acid consumption and 
net recovery 

6. Back transform the estimated variables. 
7. Determine uncertainty in the model. 

 
Step 1: Remove unimportant and redundant variables 

The number of variables must be reduced to prevent over fitting.  Variables are 
removed from the analysis because (1) they have a low correlation to the six output 
variables or (2) they are highly redundant with one of the other input variables.  A 
variable was considered to have a low correlation if the maximum correlation to any of 
the output variables was less than 0.13.  A variable was considered redundant with 
another input variable if it had a correlation greater than 0.94.  This reduces the number 
of input variables to 112. 
  

There are a total of 841 samples available for modeling; however, not all samples 
contain all 112 variables used in the calibration of this model.  Due to the nature of a 
regression model, it is necessary that all 112 variables be present for a sample to be used 
for calibration.  Of the 841 samples, 328 samples were retained for modeling the full 
regression model. 
 
Step 2: Normal score data 

All 118 variables (112 inputs + 6 outputs) are independently transformed to a 
standard Gaussian distribution.  This minimizes the effect of outliers on the regression 
models and supports a linear combination of the variables under a multivariate Gaussian 
assumption (Steps 3 and 4).  A visual assessment of the bivariate relationships between 
the input data indicated very few non-linear relationships; therefore, linear regression was 
deemed appropriate.  Complex non-Gaussian bivariate relationships would motivate the 
use of a more advanced technique such as stepwise conditional transformations 
(Leuangthong and Deutsch 2003), minimum/maximum autocorrelation factors (Switzer 
and Green, 1984), alternating conditional expectations (Breiman and Friedman 1985) etc. 
  



   

 

Step 3: Merge variables - reduce 112 input variables to 23 merged super secondary 
variables. 

There is a danger of over fitting the available calibration data if a regression 
model is constructed on all 112 input variables.  Therefore, subsets of the input data were 
amalgamated to construct super secondary merged variables.  These merged variables are 
linear combinations of a subset of variables and significantly reduces problem 
dimensionality while also reducing the risk of over fitting.  The selection of subsets is 
based on the nature of the measurements and communication with expert geologists that 
are familiar with the deposit; similar rock measurements are merged (Figures 1 and 2).  
The merged super secondary variables are generated by assigning weights to each 
variable:  
 �(�) = ∑ �����

���  
 

where n is the number of variables to be merged based on the weights from a 
likelihood calculation.  These weights are generated by solving the corresponding matrix 
for each merged variable and for each of the six output variables: 
 

                                                       ���,� ��,� … ��,���,� ��,� … ��,�
⋮ ⋮ ⋱ ⋮��,� ��,� … ��,�� �

����
⋮��� = ���,���,�

⋮��,�� 
 

The right hand side denotes the correlation between one of the variables of 
interest and the n input variables to be merged, while the left hand side is the correlation 
between all n variables to be merged. 

 
These correlation matrices may be poorly conditioned with few data.  Poorly 

conditioned matrices are the cause of extreme weights (λi) and introduce unwarranted 
noise in the predictions.  To prevent this, the correlation matrices are modified to improve 
stability.  This correction is accomplished by decreasing the values of the off diagonal 
elements of the matrix, similar to Tikhonov Regularization, which increases the value of 
the smallest eigenvalue for the matrix and increases stability. The minimum eigenvalue 
for the correlation matrices was set to 0.05. 
 

The merged variables are a linear combination of N(0,1) variables.  Thus, the 
mean of the merged variables will be 0 but the variance is not 1.  The merged variables 
are standardized by the standard deviation determined from the following classical 
relationship: 

��(�	�
) = �������
�(�� , ��)�

���

�

���

 

 
Thus, the final merged variable becomes: 
 �(�) = ∑ �����

���∑ ∑ �����
�(�� , ��)�
���

�
���

 

 



   

 

Step 4: Merge variables - reduce 23 variables to 4 merged variables. 
There are two levels of variable amalgamation.  The first level groups related variables 
into 16 merged variables and retains 7 additional variables for a total of 23 variables.  
Figure 1 shows the variables used in the limited model, while Figure 2 shows the 
variables used in the typical and full models. 
 

The second level amalgamation combines the variables into 4 super-secondary 
variables used for regression: retained variables; head assays; mineralogy and; 
associations.  After testing multiple combinations of parameters, the dual level variable 
amalgamation was found to produce accurate and stable results in cross validation.  
Considering a single level of regression on all variables tends to over fit the available 
data. 

 
Step 5: Regression.   
The typical and limited models are generated by regression on variables A, B and C while 
the full model considers variables A through D (Figures 1 and 2).  Regression was 
performed with both linear and quadratic terms but after a cross validation analysis it was 
found that increasing the number of terms beyond the linear coefficients resulted in little 
consistent gain and the linear model is carried forward.  The final model becomes: 
 ��������
� = ��� + ��� + ��� + ��	 

 
Figure 1: Variables used in the limited model. 

    
 

 
 

Figure 2: Variables used in the typical and full models. 
 
 
 

 

Retained Merged_1 Merged_2 Merged_3 Merged_4 A B C
Cu(wt%) Co(ppm) Fe(wt%) Chal_Wt% Sul_Wt% Cu(wt%) Merged_1 Merged_3
U3O8(ppm) Mo(ppm) Al(wt%) Born_Wt% A_Sol_Wt% U3O8(ppm) Merged_2 Merged_4
SG Pb(ppm) Si(wt%) Chalco_Wt% A_Insol_Wt% SG
Ag(ppm) Zn(ppm) K(wt%) Pyr_Wt% Ag(ppm)
Au(ppm) La(wt%) Ca(wt%) Au(ppm)
Badj%S Ce(wt%) P(wt%) Badj%S

Ti(wt%)
S(wt%)
CO2(wt%)

Retained Merged_1 Merged_2 Merged_3 Merged_4 Merged_5 Merged_6 Merged_7 Merged_8 Merged_9
Cu(wt%) Co(ppm) Ba(wt%) La(wt%) Uran_Wt% Chal_Wt% Sul_Wt% Bran_Pyr_assoc Cof_Bran_assoc Uran_Cof_assoc
U3O8(ppm) Mo(ppm) Fe(wt%) Mg(wt%) Cof_Wt% Born_Wt% A_Sol_Wt% Bran_Chalcopy_assoc Cof_Uran_assoc Uran_Chalcopy_assoc
SG Pb(ppm) Al(wt%) Mn(wt%) Bran_Wt% Chal_Wt% A_Insol_Wt% Bran_Bornite_assoc Cof_Pyr_assoc Uran_Bornite_assoc
K:Al Zn(ppm) Si(wt%) Na(wt%) Pyr_Wt% Bran_Chalcocite_assoc Cof_Chalcopy_assoc Uran_A_Sol_assoc
Ag(ppm) K(wt%) P(wt%) Bran_A_Sol_assoc Cof_Chalcocite_assoc Uran_A_Insol_assoc
Au(ppm) Ca(wt%) Ti(wt%) Bran_A_Insol_assoc Cof_Sulphides_assoc
Badj%S S(wt%) Ce(wt%) Bran_Free_Surf_assoc Cof_A_Sol_assoc

CO2(wt%) Cof_A_Insol_assoc
F(wt%) Cof_Free_Surf_assoc

LEVEL 1:  
10 variables 

(4 merged variables + 6 variables retained) 
LEVEL 2:  

3 final variables 

 

LEVEL 1: 23 variables (16 merged variables + 7 variables retained) 



   

 

 
 
 

 
 
 
 

 
 
Step 6: Back Transformation.   
Once the predictions are made in Gaussian units for each of the six output variables, they 
must be transformed back into original units using the original transformation tables.  The 
predicted distributions are parameterized by mean and variance values in Gaussian units.  
Quantiles from these distributions are back transformed; direct back transfrormation of 
the mean is not possible. 
 
Step 7: Determine uncertainty in the model 
The uncertainty in the predicted value can be quantified by modeling the bivariate 
relationship between the prediction and the truth with a Gaussian kernel (Figure 3).  For a 
given prediction, the potential distribution of true responses can be determined.  Consider 
the difference in making an acid consumption prediction of 60 kg/ton vs. 220 kg/ton 
(Figure 3).  There is clearly more uncertainty in the estimate of 220 kg/ton.   
 

      

Merged_10 Merged_11 Merged_12 Merged_13 Merged_14 Merged_15 Merged_16
Pyr_Cof_assoc Chalcopy_Bran_assoc Bornite_Cof_assoc Chalcocite_Chalcopy_assoc Sulphides_Uran_assoc A_Sol_Bran_assoc A_Insol_Bran_assoc
Pyr_Uran_assoc Chalcopy_Cof_assoc Bornite_Pyr_assoc Chalcocite_Bornite_assoc Sulphides_Pyr_assoc A_Sol_Cof_assoc A_Insol_Cof_assoc
Pyr_Chalcopy_assoc Chalcopy_Uran_assoc Bornite_Chalcopy_assoc Chalcocite_Sulphides_assoc Sulphides_Chalcopy_assoc A_Sol_Uran_assoc A_Insol_Uran_assoc
Pyr_Sulphides_assoc Chalcopy_Pyr_assoc Bornite_Chalcocite_assoc Chalcocite_A_Sol_assoc Sulphides_Bornite_assoc A_Sol_Pyr_assoc A_Insol_Chalcopy_assoc
Pyr_A_Sol_assoc Chalcopy_Bornite_assoc Bornite_Sulphides_assoc Chalcocite_A_Insol_assoc Sulphides_A_Sol_assoc A_Sol_Chalcopy_assoc A_Insol_Bornite_assoc
Pyr_Free_Surf_assoc Chalcopy_Chalcocite_assoc Bornite_A_Sol_assoc Chalcocite_Free_Surf_assoc Sulphides_A_Insol_assoc A_Sol_Bornite_assoc A_Insol_Sulphides_assoc

Chalcopy_Sulphides_assoc Bornite_A_Insol_assoc A_Sol_Chalcocite_assoc A_Insol_A_Sol_assoc
Chalcopy_A_Sol_assoc Bornite_Free_Surf_assoc A_Sol_Sulphides_assoc A_Insol_Free_Surf_assoc
Chalcopy_A_Insol_assoc A_Sol_A_Insol_assoc
Chalcopy_Free_Surf_assoc A_Sol_Free_Surf_assoc

A B C D
Cu(wt%) Merged_1 Merged_4 Merged_7

U3O8(ppm) Merged_2 Merged_5 Merged_8
SG Merged_3 Merged_6 Merged_9
K:Al Merged_10

Ag(ppm) Merged_11
Au(ppm) Merged_12
Badj%S Merged_13

Merged_14
Merged_15
Merged_16

Variable A contains individual variables retained. 
Variable B contains the remainder of the head assays. 
Variable C contains all mineralogy variables. 
Variable D contains all association variables (not used 
in the typical model). 
 

LEVEL 2: 4 Final Variables 



   

 

Figure 3: Left: Bivariate density between the truth and estimate for acid consumption.  
Right: Uncertainty in an estimate of 60 kg/ton vs. 220 kg/ton is shown as the conditional 

distribution of the modeled bivariate relationship.   
 
 
Analysis 
All samples were used to generate the regression models with the above methodology.  
High correlation between the estimate and the truth is desirable.  Rather than show the 
768 coefficients for variable merging and the 24 regression coefficients, a tornado chart 
(Figure 4) is used to illustrate the influence of each of the 112 variables on the overall 
model.  The lower limit is determined by selecting the p10 value for the input variable of 
interest and setting all remaining 111 variables to their p50 value.  An estimate is made for 
each of the six output variables, giving the lower limit on the tornado chart.  Similarly, 
the p90 value is selected for the variable of interest to generate the upper limit on the 
tornado chart.  A short horizontal line to the left of the variable indicates that the variable 
is negatively correlated with the output variable (i.e. the p10 response is higher than the 
p90).  Bars are shaded based on the origin of the variable. 
 
 
 
 

 
 

DWi Cu Recovery BMWi 



   

 

 
Figure 4: Full model tornado charts for DWi, BMWi and Cu recovery (top) as well as 
U3O8 recovery, acid consumption and net recovery (bottom).  White – Head Assays; 

Gray – Associations; Red – Mineralogy; Black – SG. 
 

Figure 5 shows the predictive ability of the models while Table 3 summarizes the 
correlation between actual and predicted plant performance based on the regression 
model.  Some interesting relationships were discovered in the cross plots (Figure 5) and 
the tornado charts (Figure 4): 
 

• Na is a significant contributor for DWi/BMWi which indicates different 
mineralogy. 

• SG is important for DWi but not BMWi which is expected because the brittleness 
of the rock is critical and related to the ratio of iron/silica content. 

• BMWi is heavily influenced by the head assays, the top 6 variables contributing 
to BMWi are from head assays. 

• Individual mineralogy variables have little significance (Cu recovery is the 
exception).   

• Presence of Chalcopyrite and acid insoluble gangue are critical to Cu recovery. 
• Cu wt% has a large effect on U3O8 recovery but little effect on Cu recovery. 
• Based on the tornado charts, associations are important for DWI, Cu recovery, 

acid consumption and net recovery.  This is also seen in the comparison of the 
typical and full models (Figure 5) as BMWi is not significantly altered by 
removing the association data.  

• Recoveries are the most difficult variables to predict (lowest correlation in Table 
3).  This is expected, as recovery is dependent on a large number of complex 
interactions. 

U3O8 Recovery Net Recovery Acid Consumption 



   

 

 
Table 3: Cross Validation correlations for each regression model. 

Variable Limited Model Typical Model Full Model 

DWi 0.75 0.77 0.80 

BMWi 0.53 0.54 0.77 

Cu Recovery 0.59 0.59 0.70 

U3O8 Recovery 0.61 0.62 0.65 

Acid Consumption 0.84 0.86 0.90 

Net Recovery 0.67 0.71 0.74 

 
 
There are a number of opportunities for improvement on the modeling 

methodology presented in this case study: (1) optimize the merging of the variables at the 
two different levels.  The merging of the variables was done using logical groupings of 
the 112 variables.  An optimization procedure could be developed to select ideal subsets 
of variables to increase the predictive power of the regression model. (2) Improve the 
selection of the set of variables to use for each variable predicted.  In this work, all 112 
variables were used for all 6 output variables.  Eliminating some of the less significant 
variables for individual outputs may reduce noise and increase model accuracy. 
 



   

 

 



   

 

 
Figure 5: Cross plots of the truth/estimated values based on the full model (above), the 

typical model (middle) and the limited model (below). 
 
Section 2: Multivariate Compositional Simulation of Non-Additive Geometallurgical 
Variables  
 

Recovery and plant performance outcomes are influenced by a large number of 
variables, including head assays, mineralogy and mineral associations.  Regression 
models that utilize all these variables outperform models based on head assays alone.  
These 112 variables must be spatially mapped in order to utilize the models developed. 
There are two main difficulties (1) the compositional nature of the variables must be 
accounted for and (2) many of the variables are correlated and require methodologies that 
are can be applied to a large number of variables but are effective in reproducing the 
multivariate relationships.  Also note that the model size required to align with current 
deposit modeling at Olympic Dam requires 27M cells.  The computational aspects of 
generating multiple realizations for 112 variables with 27M cells are significant.   

 
In the proposed methodology, data transformations are used to maintain the 

compositional nature of the variables and PCA analysis is used to decorrelate the 
variables.  As discussed previously, a multivariate Gaussian assumption is made and PCA 
fully removes the relationships between variables.  
 

Modeling methodologies are developed for all 112 variables, separated into three 
groups: head grade assay values; grain size measurements; and mineral associations.  



   

 

Significantly more samples exist for the head grade variables, therefore they are modeled 
first.  The grain size and association variables are modeled using the head grade 
realizations as secondary information.  This ensures consistency between all variables 
across the deposit.  
 

The head grade and mineral association data are considered compositional, that is, 
they are non-negative and sum to 100%.  A logarithmic transform is used to deal with 
this constant sum constraint.  Normally, these variables would be co-simulated with 
sequential Gaussian simulation (SGS); however, the large number of variables and the 
large model size renders this procedure computationally infeasible.  An alternative is to 
perform a principal component (PCA) transform on the logarithmic data to generate 
uncorrelated variables.  Independent SGS is then preformed on each uncorrelated 
principal component.  The values are back-transformed into original units to generate the 
realizations.  This procedure is used to model the head grade and mineral association 
data.  The grain size data, which are not compositional, are modeled using sequential 
Gaussian co-simulation for the p20, p50 and p80 values of each mineral. 
 
Modeling 23 head grade variables 
A total of 23 head grade variables are modeled for input into the linear regression 
models: Cu, U3O8, Ag, Au, Co, Mo, Pb, Zn, Ba, Fe, Al, Si, K, Ca, S, Co2, La, Mg, Mn, 
Na, P, Ti, Ce. There are a total of 111,572 head assay samples.  The K:AL ratio and BadjS 
are also required, but are calculated from the realizations of K, Al, Ba and S. 
  

The head grade variables are considered compositional because all chemical and 
mineral rock components must sum to 100%.  Not all elements in a sample are assayed; 
therefore, the sum of the head grades is less than 100%.  In geostatistical modeling, if this 
constraint is not explicitly imposed it can be violated.  A logarithmic transform of 24 
head grade variables is considered, with the 24th variable imposing the 100% constant 
sum (23 variables listed above + 1 filler variable).  The logarithmic transform is: 
 

ln i
i

filler

x
y

x

 
=   

 

 

 
where yi is the new variable to be modeled and xi represent each of the original 23 

variables.  This transformation requires non-zero values for all samples as ln(0) is 
undefined.  The back transformation is: 
 

24

1

1

i

i

y

i
y

i

e
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There are now 23 logarithmic transformed variables.  There are complex 

relationships among these 23 variables (Figure 6).  It would be difficult to reproduce all 
these relationships with traditional SGS.  Therefore, PCA transformation is considered to 
generate 23 uncorrelated variables.  These variables are assumed independent and are 



   

 

modeled independently with SGS.  This ensures good reproduction of the correlation 
between the 23 variables in the final realizations (Figure 6). 

 
An overall summary of the transformations used is shown below: 

 

 
 

 

 
 

Figure 6: Correlation between the head grade variables (left) and correlation in one 
simulation (right).  Correlations calculated in original units. 

 
 
Details of Sequential Gaussian Simulation 
Implementation of SGS requires the use of variograms for each PCA variable as well as a 
number of other important parameters.  For all variables considered in this case study, 
simulation was performed with 50 nearby data and parameters for each variogram can be 
found in Table 4.  Because of the large number of variables, variogram fitting software 
was used with a visual assessment to locate any major inconsistencies. 
  

Declustering was applied to the 23 PCA variables to obtain representative global 
histograms.  A locally varying mean was used in the simulation to consider the non-
stationary present throughout the deposit.  The local mean for each principal component 

Sequential 
Gaussian 

Simulation 

Logarithmic 
transform 
(unitless) 

PCA 
transform & 
declustering 

 

Normal 
Score 

transform 

Original 
units 
(wt%) 

Back transformations: 
1. Normal Score 
2. PCA 
3. Logarithmic 

Original 
units 

(wt%) 



   

 

was determined with a moving window average of radius 400m in the horizontal 
direction and 50% anisotropy in the vertical direction. 

 
Table 4: Variograms for the normal score of the PCA head grade variables.  A nugget 

(C0) and two spherical structures (C1 and C2) were used with no plunge angle. 

 
 
Modeling 9 grain size variables 
There are three Uranium minerals of interest: Brannerite, Coffinite and Uraninite.  The 
p20, p50 and p80 grain size for each mineral has been measured at 497 locations.  There is 
very little correlation between minerals (Figure 7) so each mineral is modeled 
independently.  The correlation between the percentiles of each grain size is reproduced 
by co-simulating the three percentiles.   

  
Figure 7: Correlation between the grain size variables.  Minerals are simulated 

independently because of the small correlation between minerals. 
 

Major Minor Vertical Major Minor Vertical

NS:PCA 1 0.11 0.345 0.544 104 -75 118 79 65 100 -86 1141 1556 548

NS:PCA 2 0.035 0.608 0.357 186 83 67 54 63 158 -56 1417 606 482

NS:PCA 3 0.219 0.348 0.432 360 -80 282 110 197 360 -80 294 1193 945

NS:PCA 4 0.212 0.283 0.505 38 -76 314 79 108 349 -82 530 1627 1488

NS:PCA 5 0.292 0.378 0.33 290 -40 166 166 209 290 -40 670 1449 1303

NS:PCA 6 0.081 0.716 0.202 106 -89 59 54 48 113 -68 535 350 192

NS:PCA 7 0.107 0.302 0.59 50 -76 85 44 55 38 -61 716 1571 947

NS:PCA 8 0.168 0.415 0.417 88 -89 101 60 53 106 -79 471 606 247

NS:PCA 9 0.19 0.455 0.356 89 90 80 64 54 109 -69 496 454 237

NS:PCA 10 0.19 0.545 0.266 311 -12 54 62 73 354 -31 398 210 1020

NS:PCA 11 0.216 0.442 0.342 130 -80 96 68 72 130 -80 550 442 284

NS:PCA 12 0.188 0.426 0.386 281 -16 53 57 81 353 -39 296 247 672

NS:PCA 13 0.239 0.376 0.385 21 83 76 50 55 101 -42 446 713 311

NS:PCA 14 0.201 0.544 0.254 214 -2 49 42 61 224 -45 272 169 290

NS:PCA 15 0.451 0.463 0.085 292 -15 104 141 263 283 24 3791 943 25404

NS:PCA 16 0.234 0.561 0.205 23 -83 68 46 55 44 -58 280 280 784

NS:PCA 17 0.465 0.45 0.085 307 -7 99 122 203 283 -81 43720 1311 35267

NS:PCA 18 0.29 0.424 0.286 198 -5 52 52 67 194 -34 999 374 487

NS:PCA 19 0.211 0.559 0.23 100 -70 55 55 47 145 -73 839 220 148

NS:PCA 20 0.195 0.564 0.241 326 -5 53 57 65 5 -16 684 480 1160

NS:PCA 21 0.332 0.627 0.042 280 -20 51 57 70 280 -20 25464 535 8428

NS:PCA 22 0.305 0.25 0.445 294 -30 81 106 157 281 -61 683 683 365

NS:PCA 23 0.598 0.19 0.212 232 70 142 106 132 231 -53 2037 1022 786

Variable Name Azimuth 1 Azimuth 2Dip 1 Dip 2C0 C1 C2
Range 1 Range 2



   

 

The densely sampled 23 head grade values are used to supplement the lack of 
information for the grain size variables by considering a super secondary variable which 
is the amalgamation of the 23 PCA head grade variables.  This super secondary variable 
is created differently for each mineral because the correlations between the mineral grain 
sizes and the PCA head grade variables differ.  To generate this super secondary variable, 
a linear combination of the PCA head grades is determined from the following equations: 
 

���,� ��,� … ��,���,� ��,� … ��,�
⋮ ⋮ ⋱ ⋮��,� ��,� … ��,�� �

����
⋮��� = ���,���,�

⋮��,�� 
 

The right hand side of this equation contains the correlation between one of the 
grain size variables and the 23 input head grade variables to be merged.  The left hand 
side is the correlation between all 23 PCA head grade variables; note that the left hand 
side contains 1.0 on the diagonal and 0.0 for all off diagonal terms because the PCA 
values are uncorrelated.  This is done for the p50 value for each mineral and the same 
super secondary variable is used for modeling the p20, p50 and p80.  This single super 
secondary variable allows for the cosimulation of the three percentiles and only one 
exhaustive secondary variable.  Without merging all secondary variables into a super 
secondary, the grain size simulations would have to consider 23 separate secondary 
variables in order to use all the available information from the head grade variables.   
  

The super secondary variable is used as a collocated secondary variable for each 
of the grain size models (Figure 8).  Note that for the grain size variables neither a 
logarithmic nor a PCA transformation is considered because there are only three variables 
(p20, p50 and p80) for each mineral.  This procedure is repeated for Brannerite, Coffinite 
and Uraninite.  This includes building a new super secondary variable for each mineral.   
  

Very few data exist for the grain size variables and the variograms are unstable. 
The same variograms are used for the p20, p50 and p80 of each mineral.  The spatial 
structure for the p20, p50 and p80 are similar, with the small differences likely due to lack 
of data.  Variograms used are shown in Figure 9 and Table 5. 

  
 
 

       
 

Brannerite                            Coffinite                                 Uraninite  



   

 

 
Figure 8: Correlation between the grain size variables.  Above – correlations from 497 

data to the super secondary variables.  Below – correlations from one grain size 
simulation. 

 
 

Figure 9: Modeled variograms for the 9 grain size variables.  The same variogram was 
used for the percentiles of each mineral.  Background histogram indicates number of 

pairs for each experimental variogram point. 
 

Table 5: Variograms for the grain size data.  A nugget (C0) and two spherical structures 
(C1 and C2) were used with no plunge/dip angle and no horizontal anisotropy. 

 
 

Horizontal Vertical Horizontal Vertical

Brannerite 0.4 0.2 0.4 200 20 200 150

Coffinite 0.4 0.2 0.4 400 20 400 300

Uraninite 0.4 0.2 0.4 200 20 200 350

Range 1 Range 2
Variable Name C0 C1 C2



   

 

Modeling 100 association matrix variables 
Modeling the association matrix utilizes a combination of the techniques previously 
discussed.  The matrix is a 10 x 11 matrix where each row sums to 1.0 (or 100%).  
Consider this sample: 
 

 
 

Each element in the matrix represents the % surface area of interaction between 
minerals determined from a mineral liberation analysis.  Each row sums to 1.0; however, 
each column does not sum to a constant as the values are standardized by the proportions.  
There are a total of 100 elements in the matrix, ignoring the diagonals.  An assumption 
that the rows are independent is made to reduce the problem to simulating 10 independent 
sets (rows) of 10 dependent variables (columns).  To maintain the constant sum 
constraint, the logarithmic transformation is applied to each row resulting in the need to 
model 9 logarithmic variables.  The PCA transformation is applied to reproduce the 
correlation between variables in each row.  The principal components of each row are 
normal score transformed and then simulated with SGS.  There are a total of 490 data 
available for simulation of the association variables. 
 
 As with the grain size variables, the head grade simulations provide a super 
secondary variable to use in collocated SGS.  There are a total of 23 (normal score PCA) 
head grade simulations to be combined into a single super secondary variable for each of 
the 100 elements in the association matrix.  The PCA transformation is done in such a 
way that the amount of data explained by each principal component can be measured by 
the associated eigenvalue.  In this case the first 5 components of the head grade 
realizations contain over 75% of the information in the original head grades.  Only the 
first 5 principal components generated in the head grade modeling are combined into the 
super secondary variable to reduce the computational requirements of the methodology.  
Moreover, the super secondary variable is only used for the first 4 of the 9 principal 
components of the association variables.  Because there are 100 association variables to 
model, available CPU resources are a significant issue.   
  

A variogram is required for each of the 90 principal components (10 sets/rows 
with 9 principal components in each).  As with the head grade variables these variograms 
were fit with automatic variogram fitting software, visually inspected for inconsistencies 
and manually corrected when necessary. 
 
Special considerations for the association data 
Missing or null values pose a problem in compositional data modeling.  In this instance 
there are entries that are missing because a particular mineral does not appear in a given 
sample.  For rows that have missing values but still sum to 1.0, the missing values are 
reset to 0.0001 or 0.01%.  In some cases there are entire rows that are missing.  This is 

Brannerite Coffinite Uraninite Pyrite Chalcopyrite Bornite Chalcocite Other Sulphides Acid Soluble Gangue Acid Insoluble Gangue Free Surface
Brannerite 8.02 88.18 3.80

Coffinite 1.71 1.64 0.25 0.24 3.50 90.67 2.00
Uraninite 23.51 76.49

Pyrite
Chalcopyrite 2.83 2.59 88.43 6.15

Bornite 0.18 0.93 15.50 75.89 7.49
Chalcocite 0.30 0.87 97.91 0.92

Other Sulphides 100.00
Acid Soluble Gangue 0.05 0.02 0.32 0.01 91.16 8.44

Acid Insoluble Gangue 0.04 0.19 0.01 0.08 0.22 0.16 0.02 12.82 86.45



   

 

because the mineral does not appear at that location; however, in these cases all values 
cannot be set to a small value as they would not sum to 1.0.  The solution implemented in 
this study was to remove the samples where the entire row was missing.  When 
performing SGS at this location the values in that particular row are simulated as if the 
data did not exist (in fact this data does exist and has a value of zero).  The miss-match 
between the missing values at this location and the simulated values given the 
surrounding data can be fixed by assigning a 0.0 proportion to the missing minerals, and 
the mismatched association values accounted for. 
 
Finally, the linear regression models developed in Section 1 are used with these 
realizations to generate multiple realizations for recovery of Cu and U3O8, acid 
consumption, net recovery, DWi and BMWi which can be used in advanced mine and 
plant planning/optimization (Figure 10). 
 
Conclusions 
 
Three linear regression models for the prediction of plant performance from head assay, 
mineralogy and association variables were created.  The regression models are used to 
predict critical plant performance variables from the available samples of head grades, 
grain sizes, mineralogy and associations.  The cost of obtaining samples of plant 
performance (i.e. pilot plant runs) is very high.  Building models based on the sparse 
sampling of mineral recovery, acid consumption and work indexes allows for the 
mapping of these variables for all locations in the deposit.  This provides a prediction of 
complex process-based variables that rarely have sufficient data density to generate 
appropriate variograms and prove difficult to effectively model.  The resulting models 
can used in mine planning and mine optimization including the mine and processing plant 
together.  Limitations of the work include the strong reliance on the multivariate 
Gaussian distribution after univariate transformation.  The sequential approach adopted 
for the variables and spatially within SGS assumes that the data from previous variables 
and locations can be successfully transferred through the modeling steps. 
 
 
 

 



   

 

 
Figure 10: Left: Cu Recovery.  Right: Uranium Recovery.  -450m Elevation. 
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