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Abstract

Modeling of geometalurgical variables is becomingréasingly important for improved
management of mineral resources. Mineral procgssincuits are complex and depend
on the interaction of a large number of propertiethe ore feed. At the Olympic Dam
mine in South Australia, plant performance varialidé interest include the recovery of
Cu and UWOg, acid consumption, net recovery, drop weight indexd bond mill work
index. There are an insufficient number of piltn trials (841) to consider direct 3-D
spatial modeling for the entire deposit. The mex¢ensively sampled head grades,
mineral associations, grain sizes and mineralogyabkes are modeled and used to
predict plant performance. A two stage linear @sgion model of the available data is
developed and provides a predictive model with elations to the plant performance
variables ranging from 0.65-0.90. There are d wit&04 variables that have sufficient
sampling to be considered in this regression moddter developing the relationships
between the 204 input variables and the six perdoice variables, the input variables are
simulated with sequential Gaussian simulation asetluo generate models of recovery
of Cu and WYOg, acid consumption, net recovery, drop weight indeg bond mill work
index. These final models are suitable for ming pllant optimization.

Introduction

Conventional resource estimation is focused onasreefew metals that are of interest in
a particular domain because their extraction wal profitable. Increasingly, it is
becoming important to understand other characiesisif the ore that affect processing
performance and recovery. The detailed spatiafibligion of these variables permits a
more holistic optimization of the mining operatioihis study relates to BHP Billiton’s
Olympic Dam project in South Australia. Two imgort topics are addressed with the
wealth of measurements taken at Olympic Dam: (tpvery and other performance
variables are related to measured rock propetii@sigh a multivariate regression model
and (2) geostatistical models of the key rock priipe are constructed by simulation and
used to predict plant performance within the site.

The main difference between typical geostatisticabdeling and modeling of
geometallurgical variables is that it is a highlyltivariate problem with complex
relationships between variables. In this studyelee a total of 204 measured variables
that may or may not be related to the six plantgperance variables of interest. A short
review of potential multivariate modeling techniquess warranted. There are three
general approaches (1) model all necessary vasiadeounting for their multivariate
relationships (Almeida and Journel 1994, Hong 2@yttt 1992) (2) reduce the number
of variables to a manageable subset by amalgamatielimination (Babak and Deutsch
2009a,b) (3) transformation of the variables tarmkependent and model independently
(Hotelling 1933; Johnson and Wichern 1998; Filznnosk999; Desbarats and
Dimitrakopoulos 2000; Bailey and Krzanowski 2012hvmany additional references
therein). A combination of these approaches il ubeoughout this work to predict
various plant performance variables.

An additional complexity involved in modeling gedaiurgical data is the
compositional nature of the variables. A full séengnalysis of all elements must sum to



100%. Moreover, a full mineralogy and mineralogiassociation analysis also sum to
100%. Without considering the constant sum aspécthe available data, typical

multivariate modeling techniques would violate @@ to unity constraint. A good

review of best practice for compositional data niiogetechniques is provided by

Pawlowsky-Glahn and Buccianti (2011). Typicallgsle techniques involve a variable
transformation such that there are no summatiostcaints on the transformed variables.
The back transformation enforces the summationtcanss.

Minerals of interest in this mine include copperanium, gold, and silver. In addition to
payable elements, there are a large number ofblasidhat affect plant performance and
recoveries. This is especially true for multi-ni@@posits such as Olympic Dam because
there are multiple processing streams, each withuentechnical characteristics. Cu is
recovered by flotation and then smelting; U by demthing the Cu tailings; Ag and Au
are by-products in the Cu concentrate. In thesegsses, gangue mineralogy can be as
important as the payable metal grades in prediecBogveries. For example, modeling of
hardness variables allow throughput predictiontatergangue minerals impact acid
consumption and U recoveries; and the copper-s(@urS) ratio is a critical parameter
for smelting. Obtaining a spatial three-dimensiamadel of these variables is a high
dimensional multivariate problem as there are 28dables to consider. Geometallurgy
is an emerging discipline in mining that can bedusepredict plant performance in situ,
prior to extracting and processing the ore.

Mineral recovery and expected plant performanceddfieult to predict because they are
influenced by a large number of variables such aseralogy, grade, grain size, plant
operation parameters, etc. This multivariate probis often oversimplified by using
constant recovery factors and plant efficienciesedaon past experience and empirical
rules. Such methods are acceptable during thefepmability stages of mineral
exploration; however, when results of pilot plamdls are available, statistical methods
can be utilized to better predict recovery and pfsrformance. In this study, 841 bulk
samples from flotation and leach tests are usethmcalibration of a predictive model.
The performance variables of interest are recoeéru and WOg, acid consumption
(used in the leaching process), net recovery, dveght index (DWi) and bond mill
work index (BMWi). The end result is a model tlbah be used to predict recovery and
plant performance based on available geometallairgiata. Finally, these variables are
modeled over the entire site using collocated satipleGaussian simulation. These
simulations are used to assess the six plant regovariables exhaustively with
uncertainty.

Section 1: Linear regression for plant performance prediction

Over 200 variables are available to develop a ssgwa model (Table 1). Using all 204
variables with the relatively few number of bulkngzles available would result in a
model that is over fit to the available data. Resthnt and unimportant variables are
identified and removed from the modeling procesducing the number of variables to
112. Through a sequence of hierarchical variablalgamation steps the variables are
condensed into 4 major sub-categories. A lineadehbased on these 4 amalgamated



variables provides a robust predictive model tlsatised to estimate potential mineral
recovery and plant performance. The data in Tabége used as input to a regression
model to predict six sparsely sampled plant peréorce variables: recovery of Cu and
U30g. acid consumption (used in the leaching process)recovery; DWi and BMWi.
The more extensively sampled input variables carsibrilated at all locations in the
deposit and used to predict local plant performanitle the regression model, allowing
for an optimization of mining and plant performance

Table 1: Data available. Note that each grouping of datammpositional in nature.
Data Type Description
This data contains the % content of the followiteneents:

Head Assays Co, As, Mo, Ni, Pb, Zn, Zr, Sr, Bi, Cd, Cs, Ga, 8, Se, Te, Th, Tl
Mineralogy
(proportions and 10 identified minerals make up the bulk of the dgpoThese include:
grain size) Brannerite, Coffinite, Uraninite, Pyrite, Chalcojigr Bornite, Chalcocite,

Other Sulphides, Acid Soluble Gangue and Acid Imsiel Gangue

Thin sections have been analyzed and the completiéxnof associations
between minerals is available. This describestimtact area between
two adjacent minerals within a single grain of tves material.

Association Data

Table 2: Description of predictive models generated.

M odel Input variables Comments
Full Model -head assays This model represents the
-10 mineralogy maximum data available.

-10x11 matrix of associations
-specific gravity

Typical Model - head assays This is the base case model.
-10 mineralogy Field data will most likely
-specific gravity contain these variables

Limited Model -limited head assays (see Figures 1 and 20nly head assays that have
-7 mineralogy variables many samples in the available
-specific gravity database are considered.

M ethodology

A linear regression model is used to predict ttempperformance variables. One
drawback with a linear regression model is thatiaflut variables are required for
prediction. The regression model cannot be apmliesettly if a single input variable is
missing from a sample. For this reason, threeessgon models are generated (Table 2).
Each model represents a decreasing number of ipgtgmeters. Selection of the
appropriate linear regression model would dependhenavailable information at each
location in the mine. If only a small number ofrigdles are missing, data imputation
strategies (Enders 2010) could be implementedgace the missing variables. This is
only recommended if a small number of variables gieventing the use of a more
detailed model.



The regression models are based on a large sepuof variables. The variables
are merged into super secondary variables basdtieonorrelations between variables
(Babak and Deutsch 2009a,b). This is done becthese are too few sample data
available to accurately determine regression odefits for the 204 input variables
available. The final model is a linear regresssonfour super secondary variables. The
detailed methodology consists of seven steps. T$teps are expanded upon below.

1. Remove unimportant and redundant variables.

2. Quantile to quantile univariate transformation tGaussian distribution.

3. Merge the variables (level 1). This step redubesltl? input variables to 23
merged variables.

4. Merge the variables (level 2). This step redubes23 merged variables to 4.

5. Regression on the 4 variables and prediction of plent performance
variables: DWi, BMWi, Cu recovery, 4D recovery, acid consumption and
net recovery

6. Back transform the estimated variables.

7. Determine uncertainty in the model.

Step 1. Remove unimportant and redundant variables

The number of variables must be reduced to preveet fitting. Variables are
removed from the analysis because (1) they hawewacbrrelation to the six output
variables or (2) they are highly redundant with aiethe other input variables. A
variable was considered to have a low correlatidha maximum correlation to any of
the output variables was less than 0.13. A vagiabhs considered redundant with
another input variable if it had a correlation geeahan 0.94. This reduces the number
of input variables to 112.

There are a total of 841 samples available for rogtehowever, not all samples
contain all 112 variables used in the calibratiérihis model. Due to the nature of a
regression model, it is necessary that all 112aes be present for a sample to be used
for calibration. Of the 841 samples, 328 samplesewetained for modeling the full
regression model.

Step 2: Normal score data

All 118 variables (112 inputs + 6 outputs) are peledently transformed to a
standard Gaussian distribution. This minimizes déffect of outliers on the regression
models and supports a linear combination of thealbes under a multivariate Gaussian
assumption (Steps 3 and 4). A visual assessmethiedbivariate relationships between
the input data indicated very few non-linear relaships; therefore, linear regression was
deemed appropriate. Complex non-Gaussian bivardétionships would motivate the
use of a more advanced technique such as stepvasditional transformations
(Leuangthong and Deutsch 2003), minimum/maximuno@artelation factors (Switzer
and Green, 1984), alternating conditional expemtat{Breiman and Friedman 1985) etc.



Step 3: Mergevariables - reduce 112 input variablesto 23 merged super secondary
variables.

There is a danger of over fitting the availableibration data if a regression
model is constructed on all 112 input variableseréfore, subsets of the input data were
amalgamated to construct super secondary mergeables. These merged variables are
linear combinations of a subset of variables angnhicantly reduces problem
dimensionality while also reducing the risk of ov¥iting. The selection of subsets is
based on the nature of the measurements and cormretioni with expert geologists that
are familiar with the deposit; similar rock measuests are merged (Figures 1 and 2).
The merged super secondary variables are genelstealssigning weights to each
variable:

M) = ¥iz; 4

wheren is the number of variables to be merged based enwtights from a
likelihood calculation. These weights are genetdg solving the corresponding matrix
for each merged variable and for each of the sigudwariables:

P11 P21 - Pni Po,1
P12 P22 - Pn 2 Po 2
Pin P2n

The right hand side denotes the correlation betwaes of the variables of
interest and the input variables to be merged, while the left hail@ $s the correlation
between alh variables to be merged.

These correlation matrices may be poorly conditiometh few data. Poorly
conditioned matrices are the cause of extreme w®i@f) and introduce unwarranted
noise in the predictions. To prevent this, the&ation matrices are modified to improve
stability. This corrections accomplished by decreasing the values of theliaijonal
elements of the matrix, similar to Tikhonov Regidation, which increases the value of
the smallest eigenvalue for the matrix and increasability. The minimum eigenvalue
for the correlation matrices was set to 0.05.

The merged variables are a linear combination d@f,IN(variables. Thus, the
mean of the merged variables will be 0 but thearare is not 1. The merged variables
are standardized by the standard deviation detedninom the following classical

relationship:
n n
d?(M()) = AiA;Cov (v, vj)
Thus, the final merged variable becomes:

Yic1 v
?:1 Z;’l:1 ALA] CO‘U(‘Ui, ‘U])

M(v) =



Step 4: Mergevariables - reduce 23 variablesto 4 merged variables.

There are two levels of variable amalgamation. fitst level groups related variables
into 16 merged variables and retains 7 additiorelables for a total of 23 variables.
Figure 1 shows the variables used in the limiteddehowhile Figure 2 shows the
variables used in the typical and full models.

The second level amalgamation combines the vasabléo 4 super-secondary
variables used for regression: retained variablesad assays; mineralogy and;
associations. After testing multiple combinatiarigparameters, the dual level variable
amalgamation was found to produce accurate andestalsults in cross validation.
Considering a single level of regression on allialdes tends to over fit the available
data.

Step 5: Regression.

The typical and limited models are generated byassion on variables A, B and C while
the full model considers variables A through D (Fes 1 and 2). Regression was
performed with both linear and quadratic termsditér a cross validation analysis it was
found that increasing the number of terms beyoerditiear coefficients resulted in little

consistent gain and the linear model is carried/dod. The final model becomes:

Prediction = av; + bv, + cvz + dv,

Figure 1: Variables used in the limited model.

LEVEL 1:
10 variables LEVEL 2:

(4 merged variables + 6 variables retained) 3final variables
Retained Merged_1 Merged_2 Merged_3 Merged_4 A B C
Cu(wt%) Co(ppm) Fe(wt%) Chal_W1t% Sul_Wt% Cu(wt%) Merged_1 Merged_3
U308(ppm)  Mo(ppm) Al(wt%) Born_Wt% A_Sol_Wt% U308(ppm) Merged_2 Merged_4
SG Pb(ppm) Si(wt%) Chalco_Wt%  A_Insol_Wt% SG
Ag(ppm) Zn(ppm) K(wt%) Pyr_Wt% Ag(ppm)

Au(ppm) La(wt%) Ca(wt%) Au(ppm)
Badj%S Ce(Wt%) P(Wt%) Badj%S

Ti(wto)
S(wi%%)
CO2(wit%)

Figure 2: Variables used in the typical and full models.

LEVEL 1: 23 variables (16 merged variables + 7 variables r etained)




LEVEL 2: 4 Final Variables

Step 6: Back Transformation.
Once the predictions are made in Gaussian unitegoh of the six output variables, they
must be transformed back into original units ushgoriginal transformation tables. The
predicted distributions are parameterized by meahvariance values in Gaussian units.
Quantiles from these distributions are back tramséal; direct back transfrormation of
the mean is not possible.

Variable A contains individual variables retained.
Variable B contains the remainder of the head assdy
Variable C contains all mineralogy variables.
Variable D contains all association variablest (1sed
in the typical model).

Step 7: Deter mine uncertainty in the model
The uncertainty in the predicted value can be diiedtby modeling the bivariate
relationship between the prediction and the truth & Gaussian kernel (Figure 3). For a
given prediction, the potential distribution oféreesponses can be determined. Consider
the difference in making an acid consumption ptéaticof 60 kg/ton vs. 220 kg/ton
(Figure 3). There is clearly more uncertaintyhia estimate of 220 kg/ton.
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Figure 3: Left: Bivariate density between the truth and eatarfor acid consumption.
Right: Uncertainty in an estimate of 60 kg/ton 280 kg/ton is shown as the conditional
distribution of the modeled bivariate relationship.

Analysis

All samples were used to generate the regressiatelmavith the above methodology.
High correlation between the estimate and the tisittlesirable. Rather than show the
768 coefficients for variable merging and the 2gression coefficients, a tornado chart
(Figure 4) is used to illustrate the influence atle of the 112 variables on the overall
model. The lower limit is determined by selectthg po value for the input variable of
interest and setting all remaining 111 variableth&ar g value. An estimate is made for
each of the six output variables, giving the lowenit on the tornado chart. Similarly,
the po value is selected for the variable of interesggémerate the upper limit on the
tornado chart. A short horizontal line to the leffthe variable indicates that the variable
is negatively correlated with the output variakle.(the po response is higher than the
Poo). Bars are shaded based on the origin of thalvkeri
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Figure 4: Full model tornado charts for DWi,
U3Og recovery, acid consumption and net recovery (bottoWhite — Head Assays;
Gray — Associations; Red — Mineralogy; Black — SG.

Figure 5 shows the predictive ability of the modetsle Table 3 summarizes the
correlation between actual and predicted plantgoperdince based on the regression
model. Some interesting relationships were diseén the cross plots (Figure 5) and
the tornado charts (Figure 4):

* Na is a significant contributor for DWi/BMWi whichndicates different
mineralogy.

* SG is important for DWi but not BMWi which is exged because the brittleness
of the rock is critical and related to the ratiaroh/silica content.

*  BMWi is heavily influenced by the head assays,ttpe6 variables contributing
to BMWi are from head assays.

* Individual mineralogy variables have little sigodince (Cu recovery is the
exception).

* Presence of Chalcopyrite and acid insoluble gaageeritical to Cu recovery.

* Cu wt% has a large effect ors@k recovery but little effect on Cu recovery.

» Based on the tornado charts, associations are teagdior DWI, Cu recovery,
acid consumption and net recovery. This is als#mse the comparison of the
typical and full models (Figure 5) as BMWi is nagrsficantly altered by
removing the association data.

* Recoveries are the most difficult variables to preflowest correlation in Table
3). This is expected, as recovery is dependena ¢terge number of complex
interactions.



Table 3: Cross Validation correlations for each regressiaaleh

Variable Limited M odel Typical Model Full Model
DWi 0.75 0.77 0.80
BM Wi 0.53 0.54 0.77
Cu Recovery 0.59 0.59 0.70
U308 Recovery 0.61 0.62 0.65
Acid Consumption 0.84 0.86 0.90
Net Recovery 0.67 0.71 0.74

There are a number of opportunities for improvememnt the modeling
methodology presented in this case study: (1) apérthe merging of the variables at the
two different levels. The merging of the variableas done using logical groupings of
the 112 variables. An optimization procedure ccadddeveloped to select ideal subsets
of variables to increase the predictive power & tlagression model. (2) Improve the
selection of the set of variables to use for eaatable predicted. In this work, all 112
variables were used for all 6 output variablesimiating some of the less significant
variables for individual outputs may reduce noiséd encrease model accuracy.
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typical model (middle) and the limited model (be)ow

Section 2: Multivariate Compositional Simulation of Non-Additive Geometallurgical
Variables

Recovery and plant performance outcomes are infkey a large number of
variables, including head assays, mineralogy anderal associations. Regression
models that utilize all these variables outperfarmadels based on head assays alone.
These 112 variables must be spatially mapped ieraal utilize the models developed.
There are two main difficulties (1) the composiabmature of the variables must be
accounted for and (2) many of the variables areetated and require methodologies that
are can be applied to a large number of variablgsake effective in reproducing the
multivariate relationships. Also note that the mlosize required to align with current
deposit modeling at Olympic Dam requires 27M cellBhe computational aspects of
generating multiple realizations for 112 variableth 27M cells are significant.

In the proposed methodology, data transformatioms used to maintain the
compositional nature of the variables and PCA aislys used to decorrelate the
variables. As discussed previously, a multivar@gissian assumption is made and PCA
fully removes the relationships between variables.

Modeling methodologies are developed for all 118aldes, separated into three
groups: head grade assay values; grain size measot® and mineral associations.



Significantly more samples exist for the head graaigables, therefore they are modeled
first. The grain size and association variables arodeled using the head grade
realizations as secondary information. This erswansistency between all variables
across the deposit.

The head grade and mineral association data asedavad compositional, that is,
they are non-negative and sum to 100%. A logaithmansform is used to deal with
this constant sum constraint. Normally, these aldeis would be co-simulated with
sequential Gaussian simulation (SGS); however |alge number of variables and the
large model size renders this procedure computtiomfeasible. An alternative is to
perform a principal component (PCA) transform oe tbgarithmic data to generate
uncorrelated variables. Independent SGS is thafopned on each uncorrelated
principal component. The values are back-transéormto original units to generate the
realizations. This procedure is used to modelhbad grade and mineral association
data. The grain size data, which are not compmositj are modeled using sequential
Gaussian co-simulation for thegppso and po values of each mineral.

Modeling 23 head grade variables

A total of 23 head grade variables are modeledirput into the linear regression
models: Cu, U308, Ag, Au, Co, Mo, Pb, Zn, Ba, F&, &, K, Ca, S, Co2, La, Mg, Mn,
Na, P, Ti, Ce. There are a total of 111,572 headyasamples. The K:AL ratio and4>
are also required, but are calculated from thez&i@dns of K, Al, Ba and S.

The head grade variables are considered compaalititause all chemical and
mineral rock components must sum to 100%. Noelalnents in a sample are assayed,;
therefore, the sum of the head grades is lesslib@®. In geostatistical modeling, if this
constraint is not explicitly imposed it can be wi@d. A logarithmic transform of 24
head grade variables is considered, with th® 2ariable imposing the 100% constant
sum (23 variables listed above + 1 filler variabl&he logarithmic transform is:

yizln( X ]
Xfiller

where yis the new variable to be modeled andepresent each of the original 23
variables. This transformation requires non-zeatues for all samples as In(0) is
undefined. The back transformation is:

eyi
Xi = 24

e+l

i=1

There are now 23 logarithmic transformed variable3here are complex
relationships among these 23 variables (Figurel6yvould be difficult to reproduce all
these relationships with traditional SGS. Theref&®?CA transformation is considered to
generate 23 uncorrelated variables. These vasiaie assumed independent and are



modeled independently with SGS. This ensures gepdoduction of the correlation
between the 23 variables in the final realizati@igure 6).

An overall summary of the transformations used® below:

Original Logarithmic PCA Normal Sequential Back tranlsfsormations:
units transform transform & Score Gaussian 1. Normal Score
(Wt%) (unitless) declustering transform Simulation 2. PCA

3. Logarithmic

Original /
units

(Wt%)
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Figure 6: Correlation between the head grade variables @eff)correlation in one
simulation (right). Correlations calculated inginal units.

Details of Sequential Gaussian Simulation

Implementation of SGS requires the use of variogréoneach PCA variable as well as a
number of other important parameters. For allaldes considered in this case study,
simulation was performed with 50 nearby data amdrpaters for each variogram can be
found in Table 4. Because of the large numberaoiables, variogram fitting software
was used with a visual assessment to locate anyr imgjpnsistencies.

Declustering was applied to the 23 PCA variablestitain representative global
histograms. A locally varying mean was used in $imulation to consider the non-
stationary present throughout the deposit. Thallowan for each principal component



was determined with a moving window average of uadd0Om in the horizontal
direction and 50% anisotropy in the vertical direact

Table 4: Variograms for the normal score of the PCA head@nariables. A nugget
(C0) and two spherical structures (C1 and C2) weesl with no plunge angle.

Variable Name | CO Cl C2 | Azimuth | Dip | Range | Azimuth 2 Dip 2 Range 2
Major Minor Vertical Major Minor Vertical
NS:PCA | 0.1l 0345 0544 104 -75 18 79 65 100 -86 1141 1556 548
NS:PCA 2 0.035 0.608 0.357 186 83 67 54 63 158 -56 1417 606 482
NS:PCA 3 0219 0348 0432 360 -80 282 110 197 360 -80 294 1193 945
NS:PCA 4 0212 0283 0.505 38 -76 314 79 108 349 -82 530 1627 1488
NS:PCA 5 0292 0378 033 290 -40 166 166 209 290 -40 670 1449 1303
NS:PCA 6 0081 0716 0.202 106 -89 59 54 48 13 -68 535 350 192
NS:PCA 7 0.107 0302 059 50 -76 85 ap 55 38 -6l 716 1571 947
NS:PCA 8 0.168 0415 0417 88 -89 101 60 53 106 -79 471 606 247
NS:PCA 9 0.19 0455 0.356 89 90 80 64 54 109 -69 496 454 237
NS:PCA 10 0.19 0545 0.266 311 -12 54 62 73 354 -31 398 210 1020
NS:PCA 11 0216 0442 0342 130 -80 96 68 72 130 -80 550 442 284
NS:PCA 12 0.188 0426 0.386 281 -6 53 57 8l 353 -39 296 247 672
NS:PCA I3 0239 0376 0.385 21 83 76 50 55 101 -42 446 713 311
NS:PCA 14 0201 0544 0254 214 -2 49 49 6l 224 -45 272 169 290
NS:PCA |5 0451 0463 0.085 292 -15 104 141 263 283 24 3791 943 25404
NS:PCA 16 0234 0561 0.205 23 -83 68 46 55 44 -58 280 280 784
NS:PCA 17 0465 045 0.085 307 -7 99 122 203 283 -8l 43720 1311 35267
NS:PCA 18 029 0424 0286 198 -5 52 52 67 194 -34 999 374 487
NS:PCA 19 0211 0559 023 100 -70 55 55 47 145 -73 839 220 148
NS:PCA 20 0.195 0564 0.24| 326 -5 53 57 65 5 -16 684 480 1160
NS:PCA 21 0332 0627 0.042 280 -20 51 57 70 280 -20 25464 535 8428
NS:PCA 22 0305 025 0445 294 -30 8l 106 157 281 -6l 683 683 365
NS:PCA 23 0598 0.19 0212 232 70 142 106 132 231 -53 2037 1022 786

Modeling 9 grain size variables

There are three Uranium minerals of interest: Beaitbe, Coffinite and Uraninite. The
P20, Pso @and Ro grain size for each mineral has been measure@l7ato¢ations. There is
very little correlation between minerals (Figure 2 each mineral is modeled
independently. The correlation between the peillesndf each grain size is reproduced
by co-simulating the three percentiles.
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Figure 7: Correlation between the grain size variablesnaévls are simulated
independently because of the small correlation eetwninerals.



The densely sampled 23 head grade values are assadpbplement the lack of
information for the grain size variables by consiug a super secondary variable which
is the amalgamation of the 23 PCA head grade MasabThis super secondary variable
is created differently for each mineral becausectireelations between the mineral grain
sizes and the PCA head grade variables differgéreerate this super secondary variable,
a linear combination of the PCA head grades isroeted from the following equations:

P11 P21 - Pna Po,1
P12 P22 - Pnz _ ,002

pl,n p2,n

The right hand side of this equation contains theetation between one of the
grain size variables and the E$ut head grade variables to be merged. Thehbaid
side is the correlation between all 23 PCA headignaariables; note that the left hand
side contains 1.0 on the diagonal and 0.0 for Hlld@agonal terms because the PCA
values are uncorrelated. This is done for thevplue for each mineral and the same
super secondary variable is used for modeling thepe and po. This single super
secondary variable allows for the cosimulation lné three percentiles and only one
exhaustive secondary variable. Without mergingsattondary variables into a super
secondary, the grain size simulations would havedosider 23 separate secondary
variables in order to use all the available infotiorafrom the head grade variables.

The super secondary variable is used as a colbcseondary variable for each
of the grain size models (Figure 8). Note that thoe grain size variables neither a
logarithmic nor a PCA transformation is considebedause there are only three variables
(P20, Pso and Ro) for each mineral. This procedure is repeatedBi@nnerite, Coffinite
and Uraninite. This includes building a new sugezondary variable for each mineral.

Very few data exist for the grain size variables #8me variograms are unstable.
The same variograms are used for thg pso and po of each mineral. The spatial
structure for the f, pso and po are similar, with the small differences likely digelack
of data. Variograms used are shown in Figure 9Taide 5.
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Figure 8: Correlation between the grain size variables. A&bexorrelations from 497
data to the super secondary variables. Below relations from one grain size

#Brannerite Vertical variograms

s W
pi0
.
0o :
200 300
Distance
Omni Hori
12| .
B
1 3 . .
= -
.
1 I L Y
Yol / I
04}
o2
o5
s
& T T T T T
o 200 400 600 800 1000
Distance

simulation.

#Coffinite Vertical variograms

#Uraninite Vertical variograms

12| 124

- 20 80 20

o oo

P poo

00 - 00
00 300 A 200
Di ce Distance
#Coftinite Omni Horizontal variograms ite Omni
s
12] 12] i b
1) H
-
- .
it
'Y(h) E // rY(h) ! L e

04 ] 04|

o m e 2

Ll Ll

- w0 Lo

o T T T T T 8 T T T T T
1] 200 400 600 800 1000 1] 200 400 600 800 1000
Di ce Distanc e

Figure9: Modeled variograms for the 9 grain size variabl€ee same variogram was
used for the percentiles of each mineral. Backgudhistogram indicates number of
pairs for each experimental variogram point.

Table5: Variograms for the grain size data. A nugget (& two spherical structures
(C1 and C2) were used with no plunge/dip anglerantlorizontal anisotropy.

Variable Name

co

Cl

Range |
c2 3

Horizontal Vertical

Range 2

Brannerite
Coffinite

Uraninite

0.4
0.4
0.4

0.2
0.2
0.2

Horizontal Vertical
0.4 200 20
0.4 400 20
0.4 200 20

200
400
200

150
300
350




Modeling 100 association matrix variables

Modeling the association matrix utilizes a comhbimatof the techniques previously
discussed. The matrix is a 10 x 11 matrix whereheaw sums to 1.0 (or 100%).
Consider this sample:

Brannerite Coffinite Uraninite Pyrite Chalcopyrite Bornite  Chalcocite |Other Sulphides |Acid Soluble Gangue Acid Insoluble Gangue Free Surface
Brannerite 8.02 88.18 3.80

Coffinite 1.71 1.64 0.25 0.24 3.50 90.67 2.00]
Uraninite 23.51 76.49
Pyrite
Chalcopyrite 2.83 2.59 88.43 6.15]
Bornite 0.18 0.93 15.50 75.89 7.49]
Chalcocite 0.30 0.87 97.91 0.92]
Other Sulphides| 100.00
Acid Soluble Gangue 0.05 0.02 0.32 0.01 91.16 8.44
Acid Insoluble Gangue 0.04 0.19 0.01 0.08 0.22 0.16 0.02 12.82 86.45

Each element in the matrix represents the % suidaea of interaction between
minerals determined from a mineral liberation asisly Each row sums to 1.0; however,
each column does not sum to a constant as thesvateestandardized by the proportions.
There are a total of 100 elements in the matrikpigng the diagonals. An assumption
that the rows are independent is made to reducertidem to simulating 10 independent
sets (rows) of 10 dependent variables (columns)o nlaintain the constant sum
constraint, the logarithmic transformation is apg@lto each row resulting in the need to
model 9 logarithmic variables. The PCA transfoipratis applied to reproduce the
correlation between variables in each row. Thegyal components of each row are
normal score transformed and then simulated witls.SGhere are a total of 490 data
available for simulation of the association vareshl

As with the grain size variables, the head gradaulations provide a super
secondary variable to use in collocated SGS. Taerea total of 23 (normal score PCA)
head grade simulations to be combined into a sisger secondary variable for each of
the 100 elements in the association matrix. Thé& B@nsformation is done in such a
way that the amount of data explained by each ahcomponent can be measured by
the associated eigenvalue. In this case the &rstomponents of the head grade
realizations contain over 75% of the informationtle original head grades. Only the
first 5 principal components generated in the hgradle modeling are combined into the
super secondary variable to reduce the computatiegairements of the methodology.
Moreover, the super secondary variable is only usedhe first 4 of the 9 principal
components of the association variables. Becawse tare 100 association variables to
model, available CPU resources are a significautas

A variogram is required for each of the 90 printipamponents (10 sets/rows
with 9 principal components in each). As with tlead grade variables these variograms
were fit with automatic variogram fitting softwangsually inspected for inconsistencies
and manually corrected when necessary.

Special considerationsfor the association data

Missing or null values pose a problem in composdiodata modeling. In this instance
there are entries that are missing because a yartimineral does not appear in a given
sample. For rows that have missing values butstih to 1.0, the missing values are
reset to 0.0001 or 0.01%. In some cases thererdi® rows that are missing. This is



because the mineral does not appear at that logdtawever, in these cases all values
cannot be set to a small value as they would notteul.0. The solution implemented in
this study was to remove the samples where thaeentiw was missing. When
performing SGS at this location the values in thatticular row are simulated as if the
data did not exist (in fact this data does exist bas a value of zero). The miss-match
between the missing values at this location and ghmeulated values given the
surrounding data can be fixed by assigning a Gopgotion to the missing minerals, and
the mismatched association values accounted for.

Finally, the linear regression models developedSection 1 are used with these
realizations to generate multiple realizations fecovery of Cu and iDg, acid
consumption, net recovery, DWi and BMWi which can Used in advanced mine and
plant planning/optimization (Figure 10).

Conclusions

Three linear regression models for the predictibplant performance from head assay,
mineralogy and association variables were creafBige regression models are used to
predict critical plant performance variables frohe tavailable samples of head grades,
grain sizes, mineralogy and associations. The obsbbtaining samples of plant
performance (i.e. pilot plant runs) is very higBuilding models based on the sparse
sampling of mineral recovery, acid consumption amork indexes allows for the
mapping of these variables for all locations in deposit. This provides a prediction of
complex process-based variables that rarely haticisnt data density to generate
appropriate variograms and prove difficult to effeely model. The resulting models
can used in mine planning and mine optimizatiotuidiog the mine and processing plant
together. Limitations of the work include the sigoreliance on the multivariate
Gaussian distribution after univariate transforimati The sequential approach adopted
for the variables and spatially within SGS assuthas the data from previous variables
and locations can be successfully transferred tfirdne modeling steps.



Figure 10: Left: Cu Recovery. Right: Uranium Recovery. -dbBlevation.
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