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ABSTRACT  

The estimation of actual or potential acid rock drainage (ARD) at mine sites is usually 
accomplished by sampling specific parameters that allow detection and prediction of the potential 
for ARD.  The use of block models to estimate and describe the spatial extent of relevant variables 
is becoming more common, although quantification of the uncertainty associated with the problem 
is generally not available, yet it can be critical in an ARD characterization study. 

Uncertainties in sampling and analytical processes, in the characterization of the volumes and areas 
affected or potentially affected by ARD, in the interpolation of sampled values, and in the 
characterization of physical processes that allow prediction of fate and transport, are always present.  
It is unrealistic to pretend that the estimation process is error-free, and thus it follows that it is 
important to provide adequate models of uncertainty, in addition to reasonable estimates of ARD 
potential. The model of uncertainty can then be used to develop technical risk assessments, 
including false positives or negatives of certain variables exceeding (or not) certain thresholds. 

This paper outlines a stochastic method based on geostatistical conditional simulations that allows 
assessment and modeling of uncertainty in spatial modeling.  This assessment is then translated into 
risk levels, allowing for a decision-making process that is based on levels of uncertainty.  The 
concept of Loss Functions is illustrated with an example drawn from a porphyry Cu-Mo deposit in 
South America. 
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INTRODUCTION  

Characterization of ARD is now a typical component of any Feasibility Study, remedial 
investigation, or closure planning in any mining project around the world, and requires a committed 
and time-consuming effort.  This investment is orientated initially towards assessing the potential 
for ARD in the short and long term.  Mitigation and minimization of future negative consequences 
of contamination on human population and ecosystem are also considered.  The results of such 
mitigating effort are generally measured in terms of eco-health and, sometimes, human health risk 
assessment. During this process, assessment of the risk associated with estimation errors is almost 
always lacking. 

ARD characterization is usually accomplished by gathering field data of different types, such as 
neutralization potential, total sulfide, sulfur (or rather, sulfate sulfur), carbonate and carbon dioxide, 
as well as water quality analyses and specific trace elements. Several authors have discussed the use 
of field samples and blocks models to characterize different aspects of ARD-related problems, see 
for example Miller and Hertel (1997), Downing and Giroux (1993), and Downing and Madeisky 
(1997). 

Several factors contribute to technical risk, including but not limited to: 

 Uncertainties in the initial sample collection, which are related to sampling 
techniques used, the specific locations that are sampled and not sampled (i.e., 
sample location biases), and the relationship between sampling methods and 
the heterogeneity of the elements being sampled.  A common example is not 
sampling all the important rock or mineralogical types that may have an impact 
in ARD estimation and prediction. 

 Errors related to sample preparation and analysis, see for example Gy (1982) 
and François-Bongarçon (1999), among others. 

 Errors stemming from inadequate handling of data, including data entry and 
database management processes. These errors can be minimized using 
appropriate data handling and data quality objectives protocols. 

 Limitations related to overly simplified or inappropriate data evaluation and 
modeling techniques, statistical analysis, etc.  These include ignoring or 
overlooking significant sources of spatial and natural data variability. 

 Measurement errors related to the concentrations of the variable being 
analyzed. In many instances, the acceptable contaminant levels are very close 
to their laboratory detection limits (MDLs).  This may introduce a significant 
technical challenge at the time of sample analysis, since for most methods the 
accuracy and precision of the analysis degrades near the MDL.  The concept of 
Practical Quantitation Limit (PQL) has been proposed to overcome this 
problem, see for example Gibbons (1994). 

 Uncertainties related to the definition of the geologic domains or zones that 
control the distribution of the element or contaminants being analyzed. 

Given the imprecise information handled, the overall uncertainty in the prediction processes 
involved may be significant. This uncertainty should be modeled, and should include uncertainties 
related to sampling and assaying, as well as geologic uncertainty and uncertainty associated with the 
spatial modeling of the variables.   
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METHOD  

This paper proposes the use of geostatistical conditional simulations and the concept of Loss 
Functions to model the uncertainty involved in ARD assessments.  These spatial stochastic 
simulation tools have become in recent years the preferred toolbox for uncertainty modeling and 
spatial data analysis for mining and petroleum applications. 

Many of the statistical techniques sometimes used to analyze environmental data are based on 
stringent assumptions about statistical distributions, lack of spatial correlation, and independence 
among the samples considered.  These are typical requirements of Gaussian-based statistical 
techniques often used, for example Analysis of Variance (ANOVA) and Cochran’s approximation 
to the Behrens-Fisher t-test, see among others Gibbons (1994), Gilbert (1987), and USEPA (1989).  
Therefore, these techniques are inadequate in spatial statistics, where correlation between different 
sampled points is known to exist. 

Geostatistical Conditional Simulations 

A general background of the theory of geostatistical conditional simulations is given in Goovaerts 
(1997) and in Journel (1988).  The simulations are models that reproduce the full histogram and 
spatial continuity of the original conditioning data.  Therefore, they honor the spatial characteristics 
of the spatial variable as represented by the three-dimensional sample data.  In addition, it is 
possible to extend the use of these spatial statistical tools to the time dimension, see for example 
Rossi and Posa (1991).  

By honoring the histogram, the model correctly represents the proportion of high and low values, 
the mean, the variance, and other spatial statistical characteristics of the data.  By honoring the 
variogram it correctly portrays the spatial complexity of the variables, and the connectivity of low 
and high contaminant zones.  These are fundamental variables that need to be considered in order to 
improve predictions and diminish predictive uncertainty.  When several simulated images are 
obtained, then it can be said that a model of uncertainty has been obtained.  

Conditional simulations are built on fine grids, as fine as possible given the hardware available, so 
that they correspond to approximately the support size of the original samples.  The vertical 
resolution of the grid is a function of the support data, typically the size of the sampled or screened 
interval.  Larger grid sizes may still be used sometimes because of the amount of computer time and 
hard disk space involved.  In building a conditional simulation model, many of the decisions 
necessary in typical geostatistical estimations are required, most importantly regarding the 
definition of the simulation domains (stationarity). Changes in geologic or hydro-geologic domains 
require splitting the data into different populations. Boundaries between simulation domains can be 
hard (no data influence across the boundary) or soft, where some data is used from the neighboring 
domain. Thorough understanding of the behavior of extreme and outlier values in the sampled 
population is required. Issues such as limiting the maximum simulated grade should be carefully 
considered. 

The simulation method itself should be decided based on the statistical characteristics of the 
variable being simulated, the quantity and quality of available samples, the availability of using 
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fuzzy information such as geologic descriptions, and the desired output.  The most commonly used 
methods are the Sequential Gaussian (Isaaks, 1990) and Sequential Indicator (Alabert, 1986).  The 
latter is more complicated, is based on multiple indicator kriging techniques (Journel, 1988), and 
requires the definition of several indicator cutoffs. The former is simpler and quicker, although 
more restrictive in its basic assumptions. 

All available geologic and hydro-geologic information can and should be used, typically taking the 
form of “soft” or imprecise information.  For example, statements such as “Rock type A is highly 
acid generating” can be used as prior probabilities in a Bayesian sense. 

As with any geostatistical estimation exercise, variogram models should be obtained.  These may be 
particularly problematic, since sometimes there are not enough field samples to obtain such models.  
This is a potentially serious issue, but there are a number of alternatives that can be resorted to when 
developing variogram models. Some of these include judiciously applying prior knowledge about 
the site, data censoring (or what to do with non-detects, sometimes a high proportion of the total 
sample population), allowed minimum and maximum data values, number of conditioning data to 
be used, search distances, and assumed directions of anisotropies. 

When a number of these conditional simulations have been run and checked, then, for each point 
defined in the grid, there is a set of possible values for the simulated variable available.  These 
values are interpreted to describe the model of uncertainty for that point, generally arranged as a 
posterior cumulative conditional probability curve. Preferably, a large number of simulations are 
needed to describe this curve better.  However, due to practical limitations, a much smaller number, 
perhaps as small as 20-30 simulations, can be used as an initial approximation.  When there is 
significant conditioning information, these simulated values for each cell will not vary much, 
meaning that the most likely value is known with a good degree of certainty.  The opposite occurs 
when the cell has few samples nearby.  

The model of uncertainty obtained for each point can be described as: 

},...,1),(|)({Pr)(|;( nnzxZobnxzF      (1) 

F(z;x|(n)) represents the cumulative conditional distribution frequency curve for each vector x of the 
simulated grid, obtained using the (n), �=1,...,n conditioning filed samples, and it provides the 
probability of that point in the grid of being above (or below) any contaminant value z. 

Loss Functions 

Final recommendations in Feasibility Studies and Remedial Investigations (FS/RIs) are typically 
based on predicted impacts on ecosystems and/or health risk assessments, which in turn are based 
on estimates of contamination, z*(x).  Since the true values at each location are not known, errors 
can and will likely occur.  The loss function L(e) (Journel, 1988; Isaaks, 1990; Rossi, 1999) is a 
mathematical function that attaches an economical value (impact or loss) to each possible error, 
measured in, for example, dollars.  If the full set of possible values is known at each location, for 
example in the form of the conditional probability distribution described in Equation (1), the loss 
function can be used to obtain the expected conditional loss: 
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The minimum expected loss is found by calculating the conditional expected loss for all possible 
values of the estimates, and retaining the estimate that minimizes the expected loss.  As described in 
Isaaks (1990), the expected conditional loss is commonly a step function whose value depends on 
the assumed costs of each bad decision, and the relative of costs of miss-classification.  This implies 
that the expected conditional loss depends only on the classification of the estimate z*(x), not on the 
estimated value itself. 

The Loss Function thus quantifies the consequences of false positives and false negatives, weighs 
the relative impact of each, the probability of each, and then derives the minimum cost solution. For 
example, in an operation where the mine plan contemplates using the acid neutralizing potential 
(ANP) of the in-situ rock to influence the scheduling of waste stockpiles, the loss incurred when 
rock is predicted to be high in ANP when in fact it is not is a direct function of the costs incurred.  
The cost of the mistakes made can usually be estimated and used to quantify risk.  In some extreme 
cases, when a significant loss of health, quality of life, or life itself results, the cost can be assumed 
to be infinite.  Figure 1 shows a typical Loss Function, where an overestimation error incurs in 
unnecessary costs, increasing linearly with the magnitude or the error, while an underestimation 
error causes the Loss to increase exponentially with the absolute value of the error, and for certain 
errors it becomes infinite. 

 

Figure 1: Hypothetical Loss Function. 
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An Example from a Large Open Pit Mine 

The example described here corresponds to a large open pit porphyry Cu-Au deposit in South 
America. The purpose of the study was to evaluate the application of the geostatistical assessment 
of potential risks related to developing waste rock piles with nearly-zero net acid generating 
potential (AGP). Several variables have been analyzed from drill hole samples, including acid 
generating potential (AGP) and acid neutralizing potential (ANP) values, as well as sulfur in 
sulfates, pyrite, arsenic, etc. The information is obtained from blast holes, and is measured in kg/ 
ton of H2SO4. This example is based on ANP, which is defined as the capacity for solutes plus 
particulates in an aqueous system to neutralize acid. It is an estimate of alkalinity, commonly 
measured in water samples, except that it is taken from non-filtered samples, i.e., includes the acid 
neutralizing capacity of the particulates that may be present. Therefore, it is deemed more 
representative of the overall acid neutralizing capacity of the in-situ rock.   

The development of waste dumps with non-acid generating potential may be accomplished by 
alternatively stacking acid generating rock and rock with high ANP. A spatial estimate of both 
variables is required well in advance of mining, preferably at the time of preparing the life-of-mine 
plan, which in this case is about 15 years.  In the case of this operation, it implies attempting to 
estimate in-situ ANP values no less than 200 or 300 meters below current surface. 

A preliminary analysis of the data available showed that there are significant spatial and temporal 
variations in water quality in active and background wells, as well as in ex-pit surface water, and 
mostly dependent on seasonal rains. A conditional simulation (CS) model was developed covering 
the volume of the remaining mining reserves (within the designed ultimate pit) for ANP, ANC, S, 
and SO4 using the Sequential Gaussian simulations (SGS) method. In order to develop the 
simulations, the following steps were completed: 

1. Initial exploratory statistical data analysis was performed over the whole database.   
This included separating the ANP and other variables by domains, according to their 
geologic and statistical characteristics. Among those, there are three geological domains 
with significant amount of gypsum, which contributes significant amounts of SO4. 
These domains are located at the center and also towards the periphery of the deposit.  

2. Variogram models were obtained for each variable within each domain.  In some cases, 
due to data scarcity, only an omni-directional variogram was modeled. The models (not 
presented in this paper) showed significant spatial correlation within some units, with a 
relative nugget effect between 20 and 40% of total variance.  

3. The simulation grid was defined on a 5 x 5 x 5m cell, and 30 simulations were 
obtained. These simulations provide the model of uncertainty of Equation (1).  Figure 2 
shows a plan view at level 330m of four of the 30 simulations representing acid-
generating potential1. Note that the general spatial trends are reproduced in all 
simulations; however, there are variations in the vicinity of higher values from 
simulation to simulation. 

4. The simulations models were properly validated using the original data and all other 
simulations parameters chosen. 

                         
1 All values shown in this paper have been factored to protect confidentiality.  
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To visualize this model of uncertainty, multiple options are available. One possibility is to use 
probability maps, such as the one shown in Figure 3. In this case, the probability that the ANP 
variable be less than a critical threshold is shown2 for the same level 330m. Note that those areas 
with high probabilities are almost certainly acid-generating, while the most uncertain areas are those 
where probabilities are close to 50%, with little certainty one way or the other. The spatial trends 
observed are consistent with the known geology, including the structural, alteration, and lithology 
models, and also considering gypsum content, a significant provider of sulfates. Also, the high 
probability area to the southwest of the picture corresponds to a simulation domain with few drill 
holes, and requires further confirmation. 
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Figure 2: Four simulated models, open-pit area, level 330m, Acid Neutralizing Potential. 

                         
2 All thresholds used in this paper are not listed to protect confidentiality. 
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Figure 3: Probability of Acid Neutralizing Potential less than a critical threshold, Level 330m.   

 

Developing the Loss Function 

The Loss Function applied to evaluate risk in this case was based on the following Equation: 

Cost PotentialCost ActualLoss     (3) 

The general expression for the costs associated with each type of error are depicted in Figure 1, 
where it is assumed that the costs of mishandling acid-generating rock increases exponentially with 
the error magnitude (which includes an unknown future liability), while the cost of neutralizing rock 
that did not needed to be neutralized increases linearly with the error magnitude. This is a 
conservative position to take because of the higher costs associated with not sufficiently 
neutralizing the waste rock in the dumps (false negative). 

Applying a loss function similar to the one described, it is possible to find out the actual economic 
losses for each simulated value in each cell of the study area. Compositing these losses according to 
Equation (2) result in a mapped “optimal loss” classification. The loss map shown in Figure 4 is 
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based on the simulations and the specific economic conditions assumed. The unit shown is dollars 
per ton of material not properly neutralized. Note that, compared to Figure 3, the loss function 
suggests that, based on the false negative and false positive costs assumed, it is better to neutralize a 
larger volume of rock. The differences between both maps depend on how linear the loss function 
is. The associated risk for each type and level of error is not generally directly proportional to the 
probability of making the error, except when the loss function is linear for both error types. In this 
case, a probability measure from the conditional simulations (model of uncertainty) provides a 
direct measure of risk, which would make Figs. 3 and 4 similar.   
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Figure 4: Loss function map, pit level 330m. 

 

CONCLUSIONS 

When trying to model ARD-related variables, make decisions, and eventually operate and monitor a 
prevention or mitigation program, it is often difficult to accurately assess and predict a number of 
technical aspects of the problem.  Most of these difficulties stem from intrinsic spatial and temporal 
rock quality variability, sampling inaccuracies, and methodological errors. These errors will lead to 
mistakes in the decision-making process and may have important consequences.  A method has 
been proposed here whereby the modeled errors are incorporated into the technical risk evaluation 
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process through the use of stochastic conditional simulations, interpreted as models of uncertainty.  
This requires going beyond the use of block models as has been proposed in the past while 
attempting to not only estimate the values of relevant variables, but to also provide a model of 
uncertainty. 

These models of uncertainty are then used to evaluate the consequences of all possible mistakes 
through the use of Loss Functions.  Evidently, the quality of the final product will depend on the 
virtues of the model of uncertainty, and the accurate reflection of incurred additional costs through 
the Loss Function defined. 

A major advantage of this method is its flexibility with respect to assessing costs, since in the 
formulation of the Loss Function there can be several types of costs included, such as the actual 
monitoring and mitigation operating costs, costs stemming from health risk assessments, other costs 
that would be more speculative, including socio-political costs. The cost of such flexibility is a more 
mathematically involved methodology, and the responsibility that results from actually explicitly 
stating the hidden assumptions that are inherent to any risk assessment process. 

The end result should be a risk-based decision-making and planning performed on the basis of a 
sound modeling technique which incorporates key uncertainties associated with ARD prediction, as 
well as a quantification of the consequences of potential errors. 
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