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Introduction
Geostatistical conditional simulations are becoming
increasingly popular as tools that provide models of
uncertainty at different stages of a mining project. They
have been used as grade control tools in daily operations
(Rossi1), to analyse risk related to resource classifications
(Rossi and Camacho2), to assess the uncertainty of minable
reserves at the project’s feasibility stage (Van Brunt and
Rossi3), and to assess mineralization potential in certain
settings. Other applications include assessment of
recoverable reserves and drill hole spacing optimization
studies.

For a general background of the theory of geostatistical
conditional simulations the reader is referred to Goovaerts4

or Journel5. Geostatistical conditional simulations are used
to build models that reproduce the full histogram and
modelled measures of spatial continuity of the original,
conditioning data. Therefore, they honour the spatial
characteristics of the spatial variable of interest as
represented by the three-dimensional sample (conditioning)
data. A ‘Large-Scale’ conditional simulation is arbitrarily
defined here as a deposit-wide or industrial-scale simulation
(see for example Rossi6), generally consisting of several
million nodes (simulating 20 to 70 million nodes is
relatively common). These types of simulations are
typically used in a well-scoped risk assessment study, or
other similar application.

The simulation model should correctly represent the
proportion of high and low values, the mean, the variance,
and other univariate statistical characteristics of the data, as
represented by the histogram. It should also correctly
reproduce the spatial continuity of the variable, including
the connectivity of low and high grade zones, anisotropies,

relative nugget effect, and other characteristics of the
variogram model.

Conditional simulations are built on fine grids, as fine as
possible given the hardware available, so that they
correspond to approximately the support size of the original
samples. The vertical resolution of the grid should be a
function of the support data, for example the size of the
mining bench, if modelling a variable mined by open pit.
Larger grid sizes may still be used sometimes because of
the amount of computer time and hard disk space involved.  

In building a conditional simulation model, many of the
conditions and requirements of linear and non-linear
estimations apply, most importantly regarding stationarity
decisions. Shifts in geologic settings require the separation
of the data into different populations. Detailed knowledge
of the behaviour of extreme and outlier values in the
sampled population is required. Issues such as limiting the
maximum simulated grade should be carefully considered.

The simulation method itself should be decided based on
the type of deposit, the Random Function model chosen, the
quantity and quality of available samples, the possibility of
using ‘soft’ or fuzzy information, and the desired output.
All these are, to a large extent, subjective decisions. These
and other implementation parameters, along with the
chosen algorithm and simulated domain, have a bearing on
the output simulations, and the resulting uncertainty model.

A required decision is whether to use a parametric or non-
parametric approach. Examples of each are the Sequential
Gaussian (Isaaks7) and Sequential Indicator (Alabert8)
simulations. The latter is more complicated, based on
multiple indicator kriging techniques (Journel9), and
requires definition of several indicator cutoffs. The former
is simpler and quicker, although more restrictive in its basic
assumptions. As with any estimation exercise, spatial
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continuity measures, such as correlograms, should be
obtained and modelled.  

When a number of conditional simulations have been run
and checked, for each node defined in the grid, there are the
same number of node values available. These set of grades
for each node, all equi-probable by construction, are
interpreted to describe the model of uncertainty for each
block, i.e., a cumulative conditional distribution function
(ccdf) curve. Preferably, a large number of simulations are
needed to describe this curve better. However, and due to
practical limitations, a much smaller number is generally
used as an initial approximation. The model of uncertainty
developed for each point within the area of interest can be
described as (Journel9):

[1]

Here F(z;x—|(n)) represents the cumulative conditional
distribution frequency curve for each node x of the
simulated grid, obtained using the (n), α=1,...,n
conditioning samples. It provides the probability of that
point in the grid (represented in the model by the Random
Variable Z(x)) of being above (or below) any given value z,
given those (n) conditioning values. Each simulated value
for the node will represent one point in the ccdf described
in [1]. One important question in practice is: how many
simulations are needed in order to adequately describe the
ccdf [1]?

For the case study described here, sequential Gaussian
simulations (SGS) were used. SGS is based on a multi-
Gaussian Random Function model assumption for the
spatial process being simulated. The original data is first
transformed into a Gaussian distribution using a Normal
Scores transformation, also known as anamorphosis. This
process transforms any sample distribution into a univariate
Gaussian distribution. Then, tests are performed to validate
the Gaussian assumption made, such as the relationship
between indicator semi-variograms obtained from the
transformed Gaussian samples and the theoretical Gaussian
semi-variogram. The test only validates the adequacy of the
bivariate Gaussian distribution assumption (see, for
example, Goovaerts1), representing a necessary but not a
sufficient condition for multi-Gaussianity. In practice,
however, if the bivariate assumption is accepted, then a
multi-Gaussian assumption is applied without any further
considerations. 

The underlying concept in this paper is that uncertainty is
not a property of the physical attribute being modelled, but
rather of the Random Function (RF) model developed. This
RF is somewhat subjective, and only appropriate or
‘correct’ if it adequately describes the more important
aspects of the variable of interest. The latter are in turn a
function of the problem being analysed. Therefore:

• The uncertainty model that can be derived from
conditional simulations is subjective, and only relevant
to the underlying RF model; and 

• Applications that can be derived from the uncertainty
model (such as risk assessments) are only useful and
‘realistic’ if relevant to the specific problems or
questions posed by the same, specific RF model.

A common example is the assessment of uncertainty of a
block model, used to define resources and reserves of a
deposit. The uncertainty model should be built using the
same underlying RF model, in order to describe the
uncertainty related to the block model built. If an indicator-
based approach has been used to build the block model,

then the series of conditional simulations have to be also
indicator-based. It makes little sense to study the risk of a
mine plan based on an ordinary kriged block model using
Sequential Indicator Simulations. Similarly, the same
geologic model used to constrain the block model has to be
used to constrain the simulation model.

This paper will describe the impact on the uncertainty
model of some of the parameters used in obtaining
conditional simulations per the GSLIB implementation of
the Sequential Gaussian Simulation (SGS) algorithm
(Deutsch and Journel10).

Case study
The example developed below is based on two databases: a
blast hole database and a drill hole database, corresponding
to a porphyry copper deposit in northern Chile. The
examples and results shown below correspond to
uncertainty models of Total Copper (TCu) within a single
bench, although the original simulation model was indeed
deposit-wide, with over 55 million nodes simulated. Here,
this single bench is taken as an example of the minimum
volume of interest, and thus all the results discussed
correspond to the uncertainty model for the entire bench. In
practice, other volumes, such as bi-weekly, monthly or
yearly planned production volume, geologic units, or other
relevant units are used as the basis for risk analysis.

Figures 1 through 3 show the histograms and basic
statistics for the composites dataset, the blast hole dataset,
and the combined dataset, respectively. Note how the
composites are smaller in number, and also a smaller
average grade than the blast holes. This is a common
phenomenon in porphyry copper deposits in northern Chile,
and is generally related to inappropriate drilling techniques
used for sampling, and the mineralogy of higher-grade
samples. Also note that the results of any exercise involving
blast holes will be dominated by their statistical
characteristics. The combined dataset clearly reflects the
general statistics of the blast holes dataset.

The correlogram models used were the same in all cases,
obtained from the combined datasets, have a low nugget
effect, and two spherical sub-horizontal structures with
almost 600 m maximum range in the N-S direction and a
10-to-1 horizontal-to-vertical anisotropy. There are also
flat-lying NW higher-grade cross structures that influence
the first structure of the correlogram model. The kriging
plans used applied no horizontal anisotropy, and a 7:1 and a
2:1 horizontal-to-vertical anisotropy for the blast holes and

F z x n ob Z x z n n; | Pr | , ,...,( )( ) = ( ) ≤ ( ) ={ }  α 1

Figure 1. Histogram and statistics of the composites
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composites datasets, respectively. Also, the maximum
search radius when using composites only was 120 m,
while when using the combined dataset was 35 m. In all
cases, a minimum of 1 sample and a maximum of 16
samples were used to obtain a simulated value. Octant
search was used in all cases, allowing a maximum of 4
samples per octant.

Only a few statistics were used in this paper to represent
and compare the different models of uncertainty obtained.
The choice of these statistical parameters is somewhat
subjective, but appropriate to illustrate the impact of the
different RF models implemented. The main statistics
presented here are:

80th Inter-percentile range:

[2]

Where IP80 is the 80th IP Range, P90 is the 90th Percentile
of the conditional cumulative distribution function [1], and
P10 is the 10th percentile of the same distribution.

The arithmetic average of the ccdf [1] for each
simulated node and the complete bench:

[3]

Where nsim is the number of simulated values obtained for
each node, j represents the node, and s(i) represents each

simulated value for the node.  The means for each node are
then again averaged over the whole bench.

The coefficient of variation of ccdf [1] for the complete
bench:

[4]

Where σ is the standard deviation of the ccdf [1], and m is
defined in [3].

Summary of uncertainty models compared
Several models of uncertainty for Total Copper (TCu) were
obtained for a bench (Bench 4330) of this large porphyry
copper mine. These uncertainty models differ in some of
the basic parameters used to obtain the set of conditionally
simulated values. All other main variables, including
variography, geologic domains used (stationary zones), etc.
remained the same. As mentioned above, all parameter
references relate to the GSLIB implementation of the
Sequential Gaussian Algorithm, the only simulation
algorithm used in this paper.

• Uncertainty model used as ‘Base Case Model’—The
Conditional Simulation Model used as ‘Base Case
Model’ is based on the Sequential Gaussian Algorithm
(as are all others considered in this paper), obtained on
a 1 x 1 x 15 m grid of simulated nodes, and 10
simulated values for each. Also, in addition to the 15 m
composites from the exploration drill hole data, the
model used the more dense blast hole data
(corresponding to the 15 m bench height used at the
mine), ordinary kriging and multiple grid search to
obtain the simulated values, and a single initial seed for
the random number generator (reset for each simulation
by the software). There is no particular significance to
using this uncertainty model as the Base Case against
which all others are compared.

• Changes in the dataset used—Alternative conditional
simulation models were obtained using the exploration
drill hole data set only. Blast holes are mostly drilled on
a 9 x 11 m and a 10 x 10 m grid. The exploration drill
hole data is drilled to approximately a 70 x 70 m grid.
This is a fairly common in-fill grid used for ‘Feasibility
Level’ resource definition in Cu porphyry-type deposits
such as this, and provides one of the closest drill hole
spacing usually available in this type of deposit. These
two data sets 15 m composites from the exploration
drill holes and exploration drill holes plus 15 m bench
blast hole data) were used to obtain models for all the
changes mentioned next.

• Changes in simulated grid size—Conditional
Simulation Models were obtained for a 1 x 1 m grid, a 2
x 2 m grid, a 3 x 3 m grid, a 4 x 4 m grid, and a 5 x 5 m
grid. The simulated grid was always based on the
Bench Height (15 m), the vertical support of both the
blast holes and drill hole composites. Different
simulation models were obtained using the two datasets
mentioned above.

• Changes in kriging method—Both ordinary kriging (the
“Base Case”) and simple kriging with a global mean
were used in obtaining the conditional simulations. As
before, both datasets were used as well, such that 4
different comparative models are obtained.

• Changes in multiple grid search—A multiple grid
search algorithm, particular to the implementation in
GSLIB, is usually a preferred option, as it results in
faster processing speeds. The option analysed here was
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Figure 2. Histogram and statistics of the blast holes
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Figure 3. Histogram and statistics of the composites and blast
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the no use of a multiple search grid, to analyse its
impact, if any, on the uncertainty model.

• Changes in the seed of the random number generator—
Alternatively to using the standard option in GSLIB
(one seed for the random number generator for multiple
simulations, and then allowing the software to reset the
seed for each new simulation), 10 simulations were
obtained independently of each other by changing the
input random number seed.  Again, this was done using
both datasets described above.

• Changes in the number of simulations used to define
the ccdf [1]—The Base Case was repeated using 20, 30,
40, and 50 simulated values (instead of only 10) to
obtain ccdf [1] for each node. Also, the same series of
uncertainty models were obtained using the exploration
composites only. Only the case with 50 simulations is
discussed in this paper.

Results
Only the main results of this exercise are presented here.
Figure 4 shows the Base Case described above, including
the simulations obtained using both blast holes and
exploration composites, and the simulations obtained using
only exploration composites. The following main
conclusions can be reached:

• The average simulated grade for the simulations
obtained using blast holes and composites is higher
than the average grade of simulations using composites
alone. This is explained by the differences in TCu
averages between the original datasets (Figures 1
through 3).

• The CV (second axis) for the simulations based on
composites only is higher than the corresponding CV
for the blast hole plus composites simulations. This also
corresponds to a reasonable reproduction of the CV of
the original datasets (Figures 1 through 3).

• The IP80 statistic is again smaller for the simulations
obtained from blast holes plus composites,
corresponding to what is observed in the original
datasets. The IP80 is the more robust statistic of the
three chosen here, and thus has little variation from one

simulation to the next. For clarity, in the following
Figures only the average grade of the simulations and
its CV are shown.

• All three statistics for the simulations based on blast
holes plus composites vary more from one simulation
to the next, compared to the simulations obtained using
exploration composites only. This result is not as
counter-intuitive as it may appear initially, since more
data does not always imply less variability in the ccdf
[1] resulting from the simulations.

Figure 5 shows the comparisons of average grades and
CVs of the uncertainty models for different grid sizes, for
the simulations obtained using the combination of blast
holes and exploration composites. Generally, the smaller
the grid, the higher the average simulated grade, and the
lower the simulated CV. This is particularly true for the 2 x
2 m grid, and not as evident when comparing the 4 x 4 m
and the 5 x 5 m grids. The same is true for the simulations
obtained from exploration composites only (not shown
here).

Figure 6 shows the same comparison for the uncertainty
models obtained with simple kriging (SK), compared to the
base case (OK). Note that the SK variant gives lower
average grades if using the exploration composites, but very
similar averages are obtained when adding the blast holes.
This is likely a result of the influence of the global mean of
the data used, which is more reproduced less well if
composites only are used. For the CV, the SK variant
results in less variability for the combined dataset, while the
opposite is true if using the exploration composites.  Again,
this is attributed to the characteristics of the SK method
used. 

Figure 7 shows the comparison for the uncertainty models
obtained changing the random number generator seed for
each simulation. Note that there is a significant difference
in average simulated grades (from the blast holes and
exploration composites combined) for the two variants in
random number seeds assignment. This is unexpected, as it
is generally accepted that the method of assigning random
number seeds should be inconsequential to the resulting
uncertainty model.

Figure 8 shows the comparison for the uncertainty models

Figure 4. Simulations base case models, both datasets (1 x 1 x 15 m grid)
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corresponding to the use or no use of multiple grid
searches, another option characteristic to the GSLIB
implementation used here.  Note that the use of either
option does not impact significantly the resulting model of
uncertainty.

Figure 9 shows the comparison of the Base Case for both
datasets (blast holes plus exploration composites, and
exploration composites alone) when running 50 simulations
instead of 10 to determine ccdf [1]. Note how the main
conclusions derived from Figure 4 have not changed
significantly. The simulated averages derived from
exploration composites are smaller and vary more than the
averages from the blast holes plus composites simulations.
Note that Figure 4 shows the IP80 statistic, while Figure 9
does not.  Also note that in both cases after simulation 10
the approximate minimum and maximum values of the ccdf

[1] are found.  Strictly, the minimum and maximum are
found within 30 and 40 simulations for the exploration
composites and blast hole plus composites-based
simulations, respectively. This suggests that, for this TCu
distribution at least, 20–30 simulations are more than
sufficient to characterize its ccdf [1]. Also, after ten
simulations the minimum and maximum are within 1–2%
of the absolute minimum and maximum found in later
simulations, which is a reasonable approximation for most
risk analyses and other studies to be performed later.

Conclusions
The purpose of this work was to demonstrate how sensitive
the models of uncertainty are to some of the
implementation parameters chosen, in this case using the

Figure 5. Simulations on different grid sizes, blast holes plus composites
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Figure 6. Simulations based on simple and ordinary kriging, both datasets
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GSLIB software. It is emphasized that the parameters
chosen here (number of simulations, grid size, datasets to
be used, kriging method to be used, method to determine
random number seed, and use or not of multiple grid
search) are a few examples of the decisions that usually
need to be made before implementing a large-scale
simulation study, including among others the Random
Function Model chosen, simulation domains, variogram
models, etc. 

The slight and few changes implemented, and how they
impact the models of uncertainty obtained, lead to the
following main conclusions:

• All the parameters analysed, with the exception of the
multiple grid option, have a significant impact in

obtaining a model of uncertainty for the TCu
distribution described. 

• More data input into the simulation model does not
necessarily result in less variability. In this case, using
composites (less and more sparse data, with a much
larger coefficient of variation) result in simulations that
have higher variability. But if the variability of the
original blast hole dataset were higher than the
composites dataset, then the simulations would try to
reproduce it, as they do here, regardless of the amount
of data available. This comment relates to the use of
distinct datasets in the simulations.

• The sensitivity to implementation parameters shown
here suggests that the objectives of the simulation study
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Figure 7. Simulations based on assigning random number seeds by two different methods, both datasets
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must be very well-defined and constrained in order for
its results to be meaningful. 

• The simulation models obtained can and will vary
significantly depending on the choices made for each
parameter implemented. The model of uncertainty is
thus a subjective concept that results from choices
made at the time of implementation, i.e., from the
overall Random Function model chosen. Therefore, it
is argued that no ‘objective’, or ‘true’ uncertainty
model exists.
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