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ABSTRACT

In  mine design  and mine planning activities  it  is  sometimes assumed that  the block model
provided by geologists or ore reserve estimators have no associated errors or uncertainties.  This
is usually the case simply because mine planners do not have a practical and useful way of
quantifying this uncertainty on a block by block basis.  The possible variations in ore resources
and reserves are typically handled by applying a very simplistic sensitivity analysis to the, for
example,  pit  optimization process.   This  can be done by adding or  subtracting an arbitrary
amount of contained metal to the block model that represents the ore resources, and observing
the difference in resulting minable reserves and mine plans, and cash flows derived from them.

This sensitivity analysis has several shortcomings.  The manipulation of contained metal is done
on a global basis, without regard for the geology and the local variations in grade.  In addition,
the arbitrary amount of metal added or subtracted does not provide a realistic uncertainty model
that  would take into account estimation errors, such as those caused by imperfect  sampling,
imperfect geologic modeling, imperfect grade modeling, and intrinsic mineralization variability.
Therefore, the sensitivity analysis generally done has no geologic support, and therefore there is
no rational basis to believe in it.

Geostatistical  conditional  simulations  have  been  proposed  in  the  past  as  models  that  fully
describe the uncertainties involved in predicting ore resources.  These models have theoretical
and practical characteristics that allow them to provide the best alternative yet for risk analysis in
mine planning.  This paper will discuss some of these theoretical advantages, and will illustrate
the practical aspects of using conditional simulations to support mine design and planning and
management’s decision-making.  As illustration, a case study developed for a large operating
porphyry copper mine will be presented here.  In this case the conditional simulations were used
to assess the risks in achieving mine extraction targets for a significant expansion plan proposed
to almost double current copper production.

INTRODUCTION

The risks associated with the ore reserves used to plan a mine usually are either ignored or
mishandled.  Most mines operating in the mining industry could benefit from a more honest
recognition of the existence of reserve-related risks and the use of models that quantify that risk.
Reserve reporting, pit or mine designs, projected cash flows, project financing, operating plans,
and ultimately  shareholder  value  depend  on  an  accurate  assessment  of  the  basic  asset,  the
resource estimate itself.



Figure 1 (reproduced from Baker and Giacomo, 1998), shows a group of well-known new mines
and projects in Australasia.  The impact of economic losses through either under- or over-stating
the reserve grade (lost investment capital or opportunity costs) is staggering,  note the x-axis
scale.  The advantage of quantifying upside and downside potential for all these projects is quite
obvious. 

Geostatistical conditional simulations are becoming increasingly popular in recent years, mainly
due to availability of  virtually-free software and cheap hardware.   In  addition,  accumulated
experience in performing industrial-scale simulations is now significant, and there is a better
understanding of the usefulness of conditional simulations, as well as the potential pitfalls.  Some
of  the  more  important  aspects  of  conditional  simulations,  theory  and  practice,  have  been
described elsewhere, see for example Goovaerts (1997), Rossi and Van Brunt (1997), and Rossi
(1998).  Multiple simulations (models of the deposit) are required to characterize uncertainty.
This is because each simulation is interpreted as a possible, equi-probable image of the deposit,
meaning it has the same likelihood of being reality as any other simulation.  Multiple images
(obtained using a Monte-Carlo approach) can thus describe the expected range of variability for
any  particular  block.  The  resulting  range  of  variability,  and  thus  the  set  of  conditional
simulations, is termed a “model of uncertainty”, since it quantifies the possible minimum and
maximum values for any and all blocks in the model.  In this author’s experience between 10 and



20 conditional simulations are sufficient to describe adequately this range of variability.  This is,
of course, a function of the variability of the grade distribution being analyzed (gold deposits
exhibit more variability than porphyry copper, for example), and the amount of drill hole data
available (conditioning).  In any case, the simulations will provide a model of uncertainty that
can be used to quantify risk.

It  is important  to note that  the risk that  mine managers are usually interested in is  the risk
associated with production predictions.  These are a consequence of a mine plan, whose level of
detail depends on which stage the project or operating mine is at.  The cumulative processes that
occur between producing a model of reserves and resources and a detailed mine plan, schedule,
and predicted cash flow will be termed here a “Transfer Function” (Matheron, 1975, Rossi and
Alvarado,1998).

The paper will describe the methodology used to quantify risk for an operating mine, where the
central issue was to incorporate risk analysis into the feasibility study for a significant production
expansion.  Thus the transfer function includes the pit optimization and detailed mine planning
and scheduling activities. 

DESCRIPTION OF THE CASE STUDY

The subject of this case study is a major porphyry copper mine in northern Chile, which entered
production only recently.  An increase of the reserves which were the base for the original mine
design was soon believed to be sufficient  for supporting a production rate increase, and an
overall  production  expansion  by  about  60%.   The  mine  produces  copper  using  SX-EW
technology from an overall oxide mineralization reserve base of just under 900 million tons of
0.54%  Cu.   In  addition,  there  are  also  significant  secondary  enriched  and  primary  Cu
mineralization not considered in this study. 

Given the significant amount of capital investment required to achieve this expanded production,
management decided that an evaluation of risk on the reserves and its impact on the extraction
schedule and overall mine plan was necessary.  Therefore, a conditional simulation study was
commissioned, with the main objective being quantifying the upside and downside potential of
the existing mine plan for the expanded production.  

Uncertainty (risk) stems from several sources, the most important being:

1. The quality of original, conditioning information; this refers specifically to the quality of
drilling, sampling, and assaying.

2. The quality of the geologic model, and to what extent the interpreted geologic controls
are relevant and have been correctly interpreted.  This is key to a reasonable prediction of
tonnage above cutoff, since in many cases the geologic model is used to constrain the
grade interpolation, as is the case at this copper mine.

3. The process of grade interpolation itself, which requires a correct amount of smoothing in
order to predict the grade and tons of material available at the time of mining.  The main



concern is the volume-variance effect, i.e., accurately predicting recoverable reserves.

The study concentrated on characterizing the third major component described above (grade
interpolation  and  recoverable  reserves);  naturally, the  quality  of  the  final  grade  estimate  is
impacted  by  the  quality  of  the  initial  drill  hole  information,  and  so  indirectly,  it  included
characterization of the first item mentioned.  However, it is possible to develop more explicit
studies to decompose and analyze separately the impact of poor quality drill hole data.  This was
not done in this case study.  
Similarly, it is possible to analyze the contribution to risk stemming from the interpretation and
interpolation of the geologic controls on mineralization (geologic models).   In  this case, the
interpreted geologic model, used to constraint the grade interpolation for the reserve model, was
used to constrain also the simulated models.  Therefore, the conditional simulations described
here do not take into account the uncertainty related to geologic interpretation and modeling. 

The Original Block Model and Mine Plan.

The block model was built using 25x25x15m blocks, and applying the hard oxide and leached
material boundaries interpreted by the mine geologists, processed into three-dimensional solids.
The interpolation method was ordinary kriging, and used all the 15m drill hole bench composites
available,  in addition to the required correlogram models.   In  addition,  other geologic units
estimated in the model include Mixed, Secondary Enriched, and Primary material.  The mine is
for now only mining the oxide Cu portion of the deposit.

The block model was used to plan production at an accelerated rate, per the expansion program.
The mine plan was based on unit production periods of one month for production year 1998,
semi-annually  for  1999,  and  yearly  for  production  years  2000  through  2002  inclusive.
Management decided to initially study the first five years of expanded production, though the
simulations described here covered material to be produced up to year 2005.

The mine plan was developed by the local mine engineers, and resulted in mining limits for the
periods described in the paragraph above.  These same mining limits were used to “cut” the
simulations produced, thereby obtaining a per period comparison between the predicted tons and
grade above cutoff  of the block model with respect  to each of the simulations produced, as
described below.

The process described amounts to quantify the risk (upside or downside) of  minable reserves,
meaning the “received at  mill”,  or  delivered grades and tons.   These are the quantities that
determine actual cash flows.  Thus, the Transfer Function includes in this case all the steps
performed to obtain a detailed mine plan, including pit optimization (based on the original block
model) and a schedule based on appropriate production units. 



The Conditional Simulations

The conditional simulations used in this study were developed using the Sequential Gaussian
method (Isaaks, 1990).  The grid chosen to develop the simulations was 5x5x15m, and there
were 11 simulations generated in all.  According to the technique involved, first the Cu variable
is transformed into a Gaussian variable (Normal Scores transformation); the variogram of the
transformed variable is modeled, as well as the correlogram of the original Cu variable.  The
simulation is performed on the transformed Gaussian variable, and then the output simulation is
transformed back to the original space (%Cu).  Several checks are performed to verify that the 11
output simulations reproduce correctly the original (Cu) histogram and correlogram.  Although
never perfect, for this particular deposit  reproduction of the histogram and correlogram was
achieved with relative ease.

In  addition,  separate  grids  were  developed  for  the  blocks  classified  as  oxide  and  leached
material, according to the solids representing the geologic model.  A total of just under 7,400,000
nodes were simulated.  The smaller grid is then averaged to the same block sizes as the block
model used to develop the mine plan.  Thus there are 25 simulated nodes within the 25x25x15m
block.  This averaging in fact models directly the volume-variance effect of the deposit, thus
obtaining the predicted recoverable reserves. 

RESULTS

Two main results were derived from the 11 simulations:

· An F1 grade factor was defined as:

A second F1 factor was defined by changing the numerator in the equation above, and
using the grade used in the mine plan (referred to as ‘Prog 1998').   This is in fact a
factored grade, used by the mining engineer in developing the mine plan; it is based on
the block model grade, to which the mine planner applies a heuristic conservative factor
on a production unit basis. In both cases, a value greater than one implies that, according
to the average of the 11 simulations, there is a downside risk (in percent as given by F1) to
the predicted grade of the block model or the planned grade.  F1 is calculated not only for
the overall grade predicted by the model or the mine plan to be achieved for the five year
period,  but  also  for  each  production  unit  individually  (monthly,  semi-annually,  or
annually, depending on the year).  

· Confidence limits for each production unit,  and corresponding averages. Management
decided to accept discarding the lowest and highest available simulation, and therefore
the  9  remaining  simulated  values  per  block  represent  almost  82%  confidence
(9/11=0.818) that the true value is within the limits obtained.  This of course assumes that
the minimum and maximum simulated values obtained represent the absolute minimum
and maximum that could be found for the model developed.  As seen from the results
presented, this is a reasonable assumption for this deposit.



Figure 2 shows the F1 grade factors for monthly production as planned for 1998.  Note how the
factors vary significantly from month to month.  The Mod 97 F1 factor for the month of March is
1.124, that is, there is a 12% potential downside in grade when comparing the average of the
simulation  to  the  block  model  grade.   Interestingly enough,  the  mine  planner  had  cut  that
month’s grade from the block model from 0.75 to 0.66% Cu; the conditional simulations in this
case validate the heuristic planned grade. 

Figure 3 shows the same factors results on a semi-annual basis, for 1998 (averaged from the
monthly  production  units)  and  1999.   The  impact  of  averaging  is  quite  evident,  as  is  the
increasing risk for under-performance of both the Block Model grade and the corresponding
Planned Grade.  Figure 4 shows again the F1 grade factors for a yearly production unit, from
1998 through 2002.  The factors suggest that the block model overestimates grade for most of the
years considered.  Observe how the heuristic (planned) grade will perform significantly better in
general, although for the latter years it still overestimates the predicted grade according to the
conditional simulations.

Figures 5 through 7 show the same three production units (monthly for 1998, semi-annually for
1998 and 1999, and yearly for 1998 through 2002),  this time graphing the upper and lower
intervals obtained from the simulations, and the block model and planned grade averages.  Recall
that these intervals shown correspond to the range of possible values obtained by discarding the
minimum and the maximum simulated value for each block. 





Note in Figure 5 several interesting points. For example, the programmed grade for March 98
falls almost in the middle of the simulation confidence interval, while the block model grade falls
outside  the  same interval.   For  the  months  of  May and  December,  both  estimates  are  too
conservative, according to the simulations, while for the month of October the simulation model
suggests that the planned grade will  not  be achieved.  In  general,  confidence limits are not
symmetric with respect to the estimated values, and these estimates may not even fall within the
interval!  This illustrates why  it is preferable to obtain a model of uncertainty by dissociating the
tasks of estimation and of modeling uncertainty.   Even in the case of a seemingly Gaussian-
behaved variable (such as Cu grades in a porphyry copper deposit),  uncertainty models that
result from conditional simulations and Transfer Functions are obviously non-Gaussian.

CONCLUSIONS

Conditional simulations are quickly becoming standard tools for analyzing uncertainty within the
mining industry.   Industrial-scale simulations are  now fairly  common, and recommended as
standard tools for studying resource and reserve estimation related problems.  In particular, they
have demonstrated  their  usefulness  when  a  model  of  uncertainty is  required  after  applying
transfer functions.



The case study has shown an example of processing and incorporating a more sophisticated risk
analysis into a feasibility study through conditional simulations.  In  this particular case, the
Operations Management team at  the mine was interested in understanding the levels of  risk
involved in a given mine plan, which was used to predict cash flows from a proposed expansion.

The main conclusions from this work are:



· The benefits of detailed, geology-based risk analysis on the reserves and mine plan justify
the additional effort of developing conditional simulations. 

· Conditional simulations allow for unmatched flexibility in analyzing related problems,
such as drill hole density, justification of in-fill drilling in areas of greater risk from the
production  standpoint,  reserve  classification,  block  model  and  recoverable  reserves
validation, etc. 

· Conditional Simulations result in a rational description of uncertainty, providing geologic
justification basis for the use of recovery and correction factors in mine planning. 

· The  planned  expansion  was  approved  based  on  the  confidence  limits  described.
Additionally, Management decided to plan detailed future in-fill drilling campaigns with
the objective of reducing the risk for certain production units.
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